Câu hỏi:

18/11/2025 16 Lưu

\(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\) bằng

\(\frac{3}{2}.\)

0.

\(\frac{6}{5}.\)

\( - 6.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {2^n} - 6 \cdot {3^n}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {{\left( {\frac{2}{3}} \right)}^n} - 6}}{{4 \cdot {{\left( {\frac{1}{3}} \right)}^n} + 1}} = - 6\).

(Vì \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\); \(\lim {\left( {\frac{1}{3}} \right)^n} = 0\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đa giác thiết diện của một lăng trụ tam giác và một mặt phẳng có nhiều nhất 5 cạnh với các cạnh thuộc các mặt của hình lăng trụ tam giác.

Câu 2

Hàm số liên tục tại \(x = - 1\).

Hàm số liên tục tại \(x = 0\).

Hàm số liên tục tại \(x = 1\).

Hàm số liên tục tại \(x = \frac{1}{2}\).

Lời giải

Đáp án đúng là: D

Xét hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}.\)

Điều kiện xác định: \({x^3} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ne - 1\end{array} \right..\)

Do đó hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1;0;1} \right\}.\)

Kết luận A, B, C sai vì: Hàm số đã cho không xác định tại \(x = - 1;\,\,x = 0;\,\,x = 1\) nên không liên tục tại các điểm đó.

Kết luận D đúng vì:

Ta có: \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = \mathop {\lim }\limits_{x \to \frac{1}{2}} \frac{{2x - 1}}{{{x^3} - x}} = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0;\) \(f\left( {\frac{1}{2}} \right) = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0.\)

\( \Rightarrow \mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = f\left( {\frac{1}{2}} \right).\)

Vậy hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) liên tục tại \(x = \frac{1}{2}\).

Câu 3

\(y = {x^3} - x.\)

\(y = \cot x.\)

\(y = \frac{{2x - 1}}{{x - 1}}.\)

\(y = \sqrt {{x^2} - 1} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP