Cho hai đường thẳng \(a,\,\,b\) cắt nhau và không đi qua điểm \(A\). Xác định nhiều nhất bao nhiêu mặt phẳng bởi \(a,\,\,b\) và \(A\)?
1.
2.
3.
4.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Mặt phẳng hoàn toàn được xác định trong bốn cách sau:
Đi qua ba điểm không thẳng hàng.
Đi qua một đường thẳng và một điểm nằm ngoài đường thẳng.
Đi qua hai đường thẳng cắt nhau.
Đi qua hai đường thẳng song song.
Như vậy, từ hai đường thẳng \(a,\,\,b\) cắt nhau và không đi qua điểm \(A\) ta xác định được nhiều nhất 3: \(mp\left( {a,b} \right)\); \(mp\left( {A,a} \right)\); \(mp\left( {A,b} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
3.
4.
5.
6.
Lời giải
Đáp án đúng là: C
Đa giác thiết diện của một lăng trụ tam giác và một mặt phẳng có nhiều nhất 5 cạnh với các cạnh thuộc các mặt của hình lăng trụ tam giác.
Câu 2
Hàm số liên tục tại \(x = - 1\).
Hàm số liên tục tại \(x = 0\).
Hàm số liên tục tại \(x = 1\).
Hàm số liên tục tại \(x = \frac{1}{2}\).
Lời giải
Đáp án đúng là: D
Xét hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}.\)
Điều kiện xác định: \({x^3} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ne - 1\end{array} \right..\)
Do đó hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1;0;1} \right\}.\)
Kết luận A, B, C sai vì: Hàm số đã cho không xác định tại \(x = - 1;\,\,x = 0;\,\,x = 1\) nên không liên tục tại các điểm đó.
Kết luận D đúng vì:
Ta có: \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = \mathop {\lim }\limits_{x \to \frac{1}{2}} \frac{{2x - 1}}{{{x^3} - x}} = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0;\) \(f\left( {\frac{1}{2}} \right) = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0.\)
\( \Rightarrow \mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = f\left( {\frac{1}{2}} \right).\)
Vậy hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) liên tục tại \(x = \frac{1}{2}\).
Câu 3
\(y = {x^3} - x.\)
\(y = \cot x.\)
\(y = \frac{{2x - 1}}{{x - 1}}.\)
\(y = \sqrt {{x^2} - 1} .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {AHC'} \right).\)
\(\left( {AA'H} \right).\)
\(\left( {HAB} \right).\)
\(\left( {HA'C} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\({u_3} = - \frac{8}{3}.\)
\({u_3} = 2.\)
\({u_3} = - 2.\)
\({u_3} = \frac{8}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.