Câu hỏi:

17/11/2025 19 Lưu

Cho các mệnh đề sau:

(I). Hai đường thẳng song song thì đồng phẳng.

(II). Hai đường thẳng không có điểm chung thì chéo nhau.

(III). Hai đường thẳng chéo nhau thì không có điểm chung.

(IV). Hai đường thẳng chéo nhau thì không đồng phẳng.

Có bao nhiêu mệnh đề đúng?

A.

1.

B.

2.

C.

3.

D.

4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Các mệnh đề (I), (III), (IV) đúng.

Mệnh đề (II) sai vì hai đường thẳng không có điểm chung thì có thể song song hoặc chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đa giác thiết diện của một lăng trụ tam giác và một mặt phẳng có nhiều nhất 5 cạnh với các cạnh thuộc các mặt của hình lăng trụ tam giác.

Câu 2

Hàm số liên tục tại \(x = - 1\).

Hàm số liên tục tại \(x = 0\).

Hàm số liên tục tại \(x = 1\).

Hàm số liên tục tại \(x = \frac{1}{2}\).

Lời giải

Đáp án đúng là: D

Xét hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}.\)

Điều kiện xác định: \({x^3} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ne - 1\end{array} \right..\)

Do đó hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1;0;1} \right\}.\)

Kết luận A, B, C sai vì: Hàm số đã cho không xác định tại \(x = - 1;\,\,x = 0;\,\,x = 1\) nên không liên tục tại các điểm đó.

Kết luận D đúng vì:

Ta có: \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = \mathop {\lim }\limits_{x \to \frac{1}{2}} \frac{{2x - 1}}{{{x^3} - x}} = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0;\) \(f\left( {\frac{1}{2}} \right) = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0.\)

\( \Rightarrow \mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = f\left( {\frac{1}{2}} \right).\)

Vậy hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) liên tục tại \(x = \frac{1}{2}\).

Câu 3

\(y = {x^3} - x.\)

\(y = \cot x.\)

\(y = \frac{{2x - 1}}{{x - 1}}.\)

\(y = \sqrt {{x^2} - 1} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP