Câu hỏi:

18/11/2025 6 Lưu

Cho hình vẽ:

Media VietJack

Khi đó, \(NM = ...NB.\) Tìm số thích hợp điền vào “…” để được đáp án đúng. (Kết quả ghi dưới dạng số thập phân)

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 0,75

\(\Delta ANB\) \(\Delta CNM\) có: \(\widehat {NAB} = \widehat {NCM} = 90^\circ ,\;\,\widehat N\) chung nên \(\Delta ANB \sim \Delta CNM\) (g.g).

Do đó, \(\frac{{NB}}{{NM}} = \frac{{AN}}{{CN}} = \frac{2}{{1,5}} = \frac{4}{3}.\) Vậy \(NM = 0,75NB.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat A = \widehat M.\)         
B. \(\widehat B = \widehat N.\)        
C. \(\widehat A = \widehat N.\)     
D. \(\widehat B = \widehat M.\)

Lời giải

Đáp án đúng là: D

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat A = 90^\circ .\)\(\Delta MNP\) vuông tại \(P\) nên \(\widehat P = 90^\circ .\)

\(\widehat A = \widehat P = 90^\circ \) nên để \(\Delta ABC \sim \Delta PMN\) thì cần thêm điều kiện: \(\widehat B = \widehat M\) hoặc \(\widehat C = \widehat N.\)

Do đó, chọn đáp án D.

Lời giải

Media VietJack

a) Đúng.

\(M,\;\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\;\,AC\) nên \(HM \bot AB;\;\,HN \bot AC.\)

Do đó, \(\widehat {AMH} = \widehat {HMB} = \widehat {ANH} = \widehat {HNC} = 90^\circ .\)

\(AH\) là đường cao của tam giác \(ABC\) nên \(AH \bot BC.\) Suy ra \(\widehat {AHB} = \widehat {AHC} = 90^\circ .\)

\(\Delta AHM\)\(\Delta ABH\) có: \(\widehat {AMH} = \widehat {AHB} = 90^\circ ;\;\,\widehat {HAM}\) chung nên \(\Delta AHM \sim \Delta ABH\) (g.g).

b) Đúng.

\(\Delta AHN\)\(\Delta ACH\) có: \(\widehat {ANH} = \widehat {AHC} = 90^\circ ;\;\,\widehat {HAN}\) chung nên \(\Delta AHN \sim \Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AN}}{{AH}}.\) Suy ra \(A{H^2} = AN \cdot AC.\)

c) Sai.

Theo a) ta có: \(\Delta AHM \sim \Delta ABH\)  (g.g) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}.\) Suy ra \(AM \cdot AB = A{H^2}.\)

\(A{H^2} = AN \cdot AC\) nên \(AM \cdot AB = AN \cdot AC.\)

d) Đúng.

\(AM \cdot AB = AN \cdot AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}.\)

\(\Delta ANM\) và \(\Delta ABC\) có: \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}};\;\,\widehat {NAM} = \widehat {BAC} = 90^\circ \) chung nên \(\Delta ANM \sim \Delta ABC\)(c.g.c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP