Câu hỏi:

18/11/2025 5 Lưu

Phần không tô đậm trong hình vẽ biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?

 Phần không tô đậm trong hình vẽ biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau? (ảnh 1)

A. \(x - 2y < 3\);          

B. \(x - 2y > 3\);              
C. \(2x - y > 3\);                               
D. \(2x - y < 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Từ các đáp án đã cho, ta giả sử đường thẳng \(d\) có dạng \[ax + by = 3\].

Quan sát hình vẽ ta thấy đường thẳng \(d\) đi qua hai điểm \(\left( {\frac{3}{2};\,0} \right)\)\(\left( {0;\, - 3} \right)\).

Do đó, ta có hệ phương trình sau \(\left\{ \begin{array}{l}a \cdot \frac{3}{2} + b \cdot 0 = 3\\a \cdot 0 + b \cdot \left( { - 3} \right) = 3\end{array} \right.\).

Từ đó suy ra \(a = 2,\,b = - 1\) nên đường thẳng \(d\) có dạng \(2x - y = 3\).

Nhận thấy điểm \(O\left( {0;\,0} \right)\) không thuộc đường thẳng \(d\) và phần không tô đậm trong hình vẽ chứa điểm \(O\). Lại có: \(2 \cdot 0 - 0 = 0 < 3\).

Vậy phần không tô đậm trong hình vẽ biểu diễn tập nghiệm của bất phương trình \(2x - y < 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = 3\overrightarrow {GG'} \); 
B. \(\overrightarrow {AB'} + \overrightarrow {BC'} + \overrightarrow {CA'} = 3\overrightarrow {GG'} \)
C. \(\overrightarrow {AC'} + \overrightarrow {BA'} + \overrightarrow {CB'} = 3\overrightarrow {GG'} \); 
D. \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = 3\overrightarrow {GG'} \).

Lời giải

Đáp án đúng là: D

\(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

\(G'\) là trọng tâm của tam giác \(A'B'C'\) nên ta có \(\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \).

Theo quy tắc ba điểm ta có:

\(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \left( {\overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} } \right) + \left( {\overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} } \right) + \left( {\overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} } \right)\)

                          \( = 3\overrightarrow {GG'} + \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} } \right)\)

                          \( = 3\overrightarrow {GG'} - \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + \left( {\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} } \right)\)

                          \( = 3\overrightarrow {GG'} - \overrightarrow 0 + \overrightarrow 0 = 3\overrightarrow {GG'} \).

Vậy \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = 3\overrightarrow {GG'} \).

Câu 2

A. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \le 0}\\{2x + y - 80 \le 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\); 
B. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 < 0}\\{2x + y - 80 < 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\);    
C. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \ge 0}\\{2x + y - 80 \ge 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\); 
D. \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 > 0}\\{2x + y - 80 > 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\).

Lời giải

Đáp án đúng là: A

Ta có \(x\left( {x \ge 0} \right)\) là số kg sản phẩm loại một cần sản xuất, \(y\left( {y \ge 0} \right)\) là số kg sản phẩm loại hai cần sản xuất.

Xưởng có 200 kg nguyên liệu và mỗi kg sản phẩm loại một cần 2 kg nguyên liệu, mỗi kg sản phẩm loại hai cần 4 kg nguyên liệu nên ta có bất phương trình \(2x + 4y \le 200\), bất phương trình này tương đương với \(x + 2y - 100 \le 0\).

Xưởng có 1 200 giờ làm việc và mỗi kg sản phẩm loại một cần 30 giờ để sản xuất, mỗi kg sản phẩm loại hai cần 15 giờ để sản xuất nên ta có bất phương trình \(30x + 15y \le 1\,\,200,\) bất phương trình này tương đương với \(2x + y - 80 \le 0\).

Vậy ta có một hệ bất phương trình điều kiện giữa \(x\)\(y\) thỏa mãn yêu cầu bài toán là

\(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 100 \le 0}\\{2x + y - 80 \le 0}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\).

Câu 3

A. \(\frac{{\sqrt 3 }}{2}\);                                  
B. \(\sqrt 3 \);                                
C. \(\frac{{\sqrt 3 }}{3}\);                         
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {BC} \);                           
B. \(\overrightarrow {DA} \);                                
C. \(\overrightarrow {OD} - \overrightarrow {OA} \); 
D. \(\overrightarrow {AB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow u = \overrightarrow 0 \); 
B. \(\overrightarrow u = \overrightarrow {AD} \); 
C. \(\overrightarrow u = \overrightarrow {CD} \); 
D. \(\overrightarrow u = \overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\rm{sin}}\alpha \)\(\cot \alpha \) cùng dấu;       
B. Tích \({\rm{sin}}\alpha \cdot {\rm{cot}}\alpha \) mang dấu âm;
C. Tích \({\rm{sin}}\alpha \cdot {\rm{cos}}\alpha \) mang dấu dương;                                                          
D. \({\rm{sin}}\alpha \)\(\tan \alpha \) cùng dấu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. – 1;                          
B. 1;                                
C. 0;                             
D. \(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP