Câu hỏi:

18/11/2025 38 Lưu

Khẳng định nào sau đây là đúng với \(0^\circ < \alpha < 180^\circ \)?

A. \(\sin \alpha = - \sin \left( {180^\circ - \alpha } \right)\);                                                                             
B. \(\cos \alpha = - \cos \left( {180^\circ - \alpha } \right)\);
C. \(\tan \alpha = \tan \left( {180^\circ - \alpha } \right)\);                                                                             
D. \(\cot \alpha = \cot \left( {180^\circ - \alpha } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Hai góc bù nhau thì có sin bằng nhau, côsin, tang, côtang đối nhau nên với hai góc bù nhau \(\alpha \)\(180^\circ - \alpha \) (\(0^\circ < \alpha < 180^\circ \)), ta có:

\(\sin \alpha = \sin \left( {180^\circ - \alpha } \right)\);

\(\cos \alpha = - \cos \left( {180^\circ - \alpha } \right)\);

\(\tan \alpha = - \tan \left( {180^\circ - \alpha } \right)\,\,\,\,\,\left( {\alpha \ne 90^\circ } \right)\);         

\(\cot \alpha = - \cot \left( {180^\circ - \alpha } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) có \[BC = a,\,\, (ảnh 1)

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]

Lại có

\[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]

Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].

Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].

Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]

Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \]\[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được

\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]

\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]

Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].

Câu 2

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Đáp án đúng là: C

\(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(AG = \frac{2}{3}AM,\,AG = 2GM\).

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {GM} \) ngược hướng nên \(\overrightarrow {GA} = - 2\overrightarrow {GM} \). Vậy đáp án A và B đều sai.

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {AM} \) ngược hướng nên \(\overrightarrow {GA} = - \frac{2}{3}\overrightarrow {AM} \). Vậy đáp án C đúng và đáp án D sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(3\sqrt {12} \);      
B. \(2\sqrt {13} \);          
C. \(2\sqrt {37} \);                         
D. \(2\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Gọi \[G\] là trọng tâm tam giác vuông \[ABC\;\] với cạnh huyền \[BC = 12\]. Vectơ \[\overrightarrow {GB} - \overrightarrow {CG} \] có độ dài bằng

A. 2;                           
B. 4;                                
C. 8; 
D. \(2\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 100;                        
B. 101;                            
C. 102;     
D. 103.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 40,3;                       
B. 48;                              
C. 49;                               
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP