Câu hỏi:

18/11/2025 42 Lưu

Số quy tròn của số gần đúng \(a\) trong trường hợp a¯=54  880±200 là

A. 55 000;                   
B. 54 880;                       
C. 54 890;                             
D. 54 900.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(\overline a = 54\,\,880 \pm 200\).

Vì hàng lớn nhất của độ chính xác \(d = 200\) là hàng trăm, do đó ta làm tròn 54 880 đến hàng nghìn theo quy tắc làm tròn. Vậy số quy tròn của số gần đúng \(a\) là 55 000.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) có \[BC = a,\,\, (ảnh 1)

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]

Lại có

\[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]

Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].

Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].

Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]

Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \]\[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được

\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]

\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]

Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].

Câu 2

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Đáp án đúng là: C

\(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(AG = \frac{2}{3}AM,\,AG = 2GM\).

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {GM} \) ngược hướng nên \(\overrightarrow {GA} = - 2\overrightarrow {GM} \). Vậy đáp án A và B đều sai.

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {AM} \) ngược hướng nên \(\overrightarrow {GA} = - \frac{2}{3}\overrightarrow {AM} \). Vậy đáp án C đúng và đáp án D sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(3\sqrt {12} \);      
B. \(2\sqrt {13} \);          
C. \(2\sqrt {37} \);                         
D. \(2\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Gọi \[G\] là trọng tâm tam giác vuông \[ABC\;\] với cạnh huyền \[BC = 12\]. Vectơ \[\overrightarrow {GB} - \overrightarrow {CG} \] có độ dài bằng

A. 2;                           
B. 4;                                
C. 8; 
D. \(2\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 40,3;                       
B. 48;                              
C. 49;                               
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 100;                        
B. 101;                            
C. 102;     
D. 103.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP