Câu hỏi:

18/11/2025 9 Lưu

(1 điểm) Cho mẫu số liệu sau:

20      25      20      30      33      40      38      25      22      90

Tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

20      20      22      25      25     30      33      38      40      90

Vì mẫu số liệu gồm 10 số liệu (là số chẵn) nên trung vị của mẫu số liệu là trung bình cộng của hai số chính giữa, là số ở vị trí thứ 5 và thứ 6. Do đó, trung vị của mẫu số liệu hay tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = \frac{{25 + 30}}{2} = 27,5\).

Tứ phân vị thứ nhất là trung vị của dãy: 20   20     22      25          25.

Do đó, \({Q_1} = 22\).

Tứ phân vị thứ ba là trung vị của dãy: 30       33      38      40          90.

Do đó, \({Q_3} = 38\).

Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 38 - 22 = 16\).

Ta có: \({Q_1} - 1,5{\Delta _Q} = 22 - 1,5 \cdot 16 = - 2\); \({Q_3} + 1,5{\Delta _Q} = 38 + 1,5 \cdot 16 = 62\).

Trong mẫu số liệu đã cho có giá trị 90 lớn hơn 62.

Vậy mẫu số liệu đã cho có giá trị bất thường là 90.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\sqrt 3 \);              
B. \( - \sqrt 3 \);              
C. \(3\);                            
D. \( - 3\).

Lời giải

Đáp án đúng là: D

Áp dụng định lí côsin trong tam giác \(ABC\) ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC} = {1^2} + {2^2} - 2 \cdot 1 \cdot 2 \cdot \cos 60^\circ = 3\).

Suy ra \(AC = \sqrt 3 \).

Theo hệ quả của định lí côsin ta có:

\(\cos \widehat {ACB} = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2 \cdot AC \cdot BC}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + {2^2} - {1^2}}}{{2 \cdot \sqrt 3 \cdot 2}} = \frac{{\sqrt 3 }}{2}\).

Ta có: \(\overrightarrow {BC} \cdot \overrightarrow {CA} = - \overrightarrow {CB} \cdot \overrightarrow {CA} = - \left( {\left| {\overrightarrow {CB} } \right| \cdot \left| {\overrightarrow {CA} } \right| \cdot \cos \widehat {ACB}} \right) = - \left( {2 \cdot \sqrt 3 .\frac{{\sqrt 3 }}{2}} \right) = - 3\).

Câu 2

A. \(\overrightarrow {AB} + \overrightarrow {IA} = \overrightarrow {BI} \);                                 
B. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {BD} \); 
C. \(\overrightarrow {AB} + \overrightarrow {CD} = \vec 0\);                                                                       
D. \(\overrightarrow {AB} + \overrightarrow {BD} = \vec 0\).

Lời giải

Đáp án đúng là: C

Đáp án đúng là: B (ảnh 1)

Theo tính chất giao hoán và quy tắc ba điểm, ta có: \(\overrightarrow {AB} + \overrightarrow {IA} = \overrightarrow {IA} + \overrightarrow {AB} = \overrightarrow {IB} \ne \overrightarrow {BI} \) nên đáp án A sai.

Áp dụng quy tắc hình bình hành đối với hình bình hành \(ABCD\), ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \ne \overrightarrow {BD} \) nên đáp án B sai.

\(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \). Ta có: \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {DC} + \overrightarrow {CD} = \overrightarrow {DD} = \vec 0\), do đó đáp án C đúng.

Theo quy tắc ba điểm, ta có: \[\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \ne \overrightarrow 0 \] nên đáp án D sai.

Câu 3

Gọi \[G\] là trọng tâm tam giác vuông \[ABC\;\] với cạnh huyền \[BC = 12\]. Vectơ \[\overrightarrow {GB} - \overrightarrow {CG} \] có độ dài bằng

A. 2;                           
B. 4;                                
C. 8; 
D. \(2\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow u = \left( {4;\, - 9} \right)\);                      
B. \(\overrightarrow u = \left( {4;\,9} \right)\);                      
C. \(\overrightarrow u = \left( { - \,4;\, - 9} \right)\);               
D. \(\overrightarrow u = \left( { - 4;\,9} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 55 000;                   
B. 54 880;                       
C. 54 890;                             
D. 54 900.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\overrightarrow {OA} = \overrightarrow {OB} - \overrightarrow {BA} \];                                 
B. \[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {AO} \]; 
C. \[\overrightarrow {AB} = \overrightarrow {AC} - \overrightarrow {CB} \];                                 
D.\[\overrightarrow {OA} = \overrightarrow {CA} - \overrightarrow {CO} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP