(1 điểm) Cho mẫu số liệu sau:
20 25 20 30 33 40 38 25 22 90
Tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.
(1 điểm) Cho mẫu số liệu sau:
20 25 20 30 33 40 38 25 22 90
Tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.
Quảng cáo
Trả lời:
Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:
20 20 22 25 25 30 33 38 40 90
Vì mẫu số liệu gồm 10 số liệu (là số chẵn) nên trung vị của mẫu số liệu là trung bình cộng của hai số chính giữa, là số ở vị trí thứ 5 và thứ 6. Do đó, trung vị của mẫu số liệu hay tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = \frac{{25 + 30}}{2} = 27,5\).
Tứ phân vị thứ nhất là trung vị của dãy: 20 20 22 25 25.
Do đó, \({Q_1} = 22\).
Tứ phân vị thứ ba là trung vị của dãy: 30 33 38 40 90.
Do đó, \({Q_3} = 38\).
Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 38 - 22 = 16\).
Ta có: \({Q_1} - 1,5{\Delta _Q} = 22 - 1,5 \cdot 16 = - 2\); \({Q_3} + 1,5{\Delta _Q} = 38 + 1,5 \cdot 16 = 62\).
Trong mẫu số liệu đã cho có giá trị 90 lớn hơn 62.
Vậy mẫu số liệu đã cho có giá trị bất thường là 90.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Áp dụng định lí côsin trong tam giác \(ABC\) ta có:
\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC} = {1^2} + {2^2} - 2 \cdot 1 \cdot 2 \cdot \cos 60^\circ = 3\).
Suy ra \(AC = \sqrt 3 \).
Theo hệ quả của định lí côsin ta có:
\(\cos \widehat {ACB} = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2 \cdot AC \cdot BC}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + {2^2} - {1^2}}}{{2 \cdot \sqrt 3 \cdot 2}} = \frac{{\sqrt 3 }}{2}\).
Ta có: \(\overrightarrow {BC} \cdot \overrightarrow {CA} = - \overrightarrow {CB} \cdot \overrightarrow {CA} = - \left( {\left| {\overrightarrow {CB} } \right| \cdot \left| {\overrightarrow {CA} } \right| \cdot \cos \widehat {ACB}} \right) = - \left( {2 \cdot \sqrt 3 .\frac{{\sqrt 3 }}{2}} \right) = - 3\).
Câu 2
Lời giải
Đáp án đúng là: C

Theo tính chất giao hoán và quy tắc ba điểm, ta có: \(\overrightarrow {AB} + \overrightarrow {IA} = \overrightarrow {IA} + \overrightarrow {AB} = \overrightarrow {IB} \ne \overrightarrow {BI} \) nên đáp án A sai.
Áp dụng quy tắc hình bình hành đối với hình bình hành \(ABCD\), ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \ne \overrightarrow {BD} \) nên đáp án B sai.
Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \). Ta có: \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {DC} + \overrightarrow {CD} = \overrightarrow {DD} = \vec 0\), do đó đáp án C đúng.
Theo quy tắc ba điểm, ta có: \[\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \ne \overrightarrow 0 \] nên đáp án D sai.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.