Câu hỏi:

18/11/2025 3 Lưu

I. Trắc nghiệm (6 điểm)

Trong các phát biểu sau, phát biểu nào là mệnh đề?

A. “Bất phương trình \(3x + 2 < 0\) có nghiệm”;               
B. “Bất phương trình \(3x + 2 < 0\) có phải là bất phương trình bậc nhất hai ẩn không?”;
C. Bất phương trình \(3x + 2 < 0\) là bất phương trình bậc nhất hai ẩn;
D. “Bất phương trình \(3x + 2 < 0\) có vô số nghiệm”.     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Phát biểu “Bất phương trình \(3x + 2 < 0\) có phải là bất phương trình bậc nhất hai ẩn không?” không phải là mệnh đề vì đây là câu hỏi, không khẳng định tính đúng sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang vuông \(ABCD (ảnh 1)

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0\]

\[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\]

\[ = \overrightarrow {AB}  \cdot \overrightarrow {AD}  - A{B^2} + \overrightarrow {BC}  \cdot \overrightarrow {AD}  - \overrightarrow {BC}  \cdot \overrightarrow {AB} \]

Ta lại có: \[\overrightarrow {AB}  \cdot \overrightarrow {AD}  = \overrightarrow {BC}  \cdot \overrightarrow {AB}  = 0\]

Và \[A{B^2} = {h^2},\overrightarrow {BC}  \cdot \overrightarrow {AD}  = BC \cdot AD = ab\] .

Do đó, \[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0 - {h^2} + ab - 0 = ab - {h^2}\].

Vậy \[\overrightarrow {AC}  \bot \overrightarrow {BD}  \Leftrightarrow ab - {h^2} = 0\].

b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {AD} } \right)\] và \[\overrightarrow {BI}  = \frac{1}{2}\left( {\overrightarrow {BC}  + \overrightarrow {BD} } \right)\].

Khi đó ta có: \[\widehat {AIB} = 90^\circ  \Leftrightarrow \overrightarrow {AI}  \cdot \overrightarrow {BI}  = 0 \Leftrightarrow \left( {\overrightarrow {AC}  + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC}  + \overrightarrow {BD} } \right) = 0\]

\[ \Leftrightarrow \overrightarrow {AC}  \cdot \overrightarrow {BC}  + \overrightarrow {AC}  \cdot \overrightarrow {BD}  + \overrightarrow {AD}  \cdot \overrightarrow {BC}  + \overrightarrow {AD}  \cdot \overrightarrow {BD}  = 0\]

Mà \[\overrightarrow {AC}  \cdot \overrightarrow {BC}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right)\overrightarrow {BC}  = \overrightarrow {AB}  \cdot \overrightarrow {BC}  + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = ab - {h^2}\];

\[\overrightarrow {AD}  \cdot \overrightarrow {BC}  = AD \cdot BC = ab\]; \[\overrightarrow {AD}  \cdot \overrightarrow {BD}  = \overrightarrow {AD} \left( {\overrightarrow {BA}  + \overrightarrow {AD} } \right) = \overrightarrow {AD}  \cdot \overrightarrow {BA}  + {\overrightarrow {AD} ^2} = 0 + A{D^2} = {a^2}\].

Do đó, ta có: \[\widehat {AIB} = 90^\circ  \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]

Câu 2

A. \(x = 1;\,\,y = 13\); 
B. \(x = 13;\,y = 1\);       
C. \(x = - 13;\,y = 1\);                 
D. \(x = - 1;\,y = 13\).

Lời giải

Đáp án đúng là: B

\(P\) là trung điểm của \(MN\) khi và chỉ khi \[\left\{ \begin{array}{l}\frac{{5 + x}}{2} = x - 4\\\frac{{3 + y}}{2} = y + 1\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}5 + x = 2x - 8\\3 + y = 2y + 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 13\\y = 1\end{array} \right.\).

Vậy \(x = 13;\,\,y = 1\).

Câu 3

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) ngược hướng, biết \(\left| {\overrightarrow a } \right| = 2,\,\left| {\overrightarrow b } \right| = 8\). Giá trị \(\overrightarrow a \cdot \overrightarrow b \) bằng

A. – 16;                       
B. 16;                               
C. 4;      
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\(\overrightarrow {OA}  \cdot \overrightarrow {OB}  = 0\) ;                                                                                           
B.\(\overrightarrow {OA}  \cdot \overrightarrow {OC}  = \frac{1}{2}\overrightarrow {OA}  \cdot \overrightarrow {AC} \);
C.\(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = \overrightarrow {AB}  \cdot \overrightarrow {CD} \);                                                        
D.\(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = \overrightarrow {AC}  \cdot \overrightarrow {AD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tập hợp \(E = \left\{ {x \in \mathbb{N}|x = 7 - n,n \in \mathbb{N}} \right\}\). Viết tập hợp \(E\) dưới dạng liệt kê các phần tử ta được 

A. \(E = \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7} \right\}\);                     
B. \(E = \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7} \right\}\);  
C. \(E = \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\);                     
D. \(E = \left\{ {1;\,\,3;\,\,5;\,\,7} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 4;\,3} \right)\);                                                              
B. \(\left[ { - 4;\,\,3} \right]\);          
C. \(\left( { - \infty ; - 4} \right) \cup \left( {3; + \infty } \right)\);                                                              
D. \(\left( { - \infty ; - 4} \right] \cup \left( {3; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP