(1 điểm) Cho hình thang vuông \(ABCD\) đường cao \[AB = h,\] cạnh đáy \[AD = a,BC = b.\] Tìm điều kiện giữa \(a,\,\,b,\,\,h\) để
a) \(AC\) và \(DB\) vuông góc.
b) \[\widehat {AIB} = 90^\circ \] với \(I\) là trung điểm \(CD\).
(1 điểm) Cho hình thang vuông \(ABCD\) đường cao \[AB = h,\] cạnh đáy \[AD = a,BC = b.\] Tìm điều kiện giữa \(a,\,\,b,\,\,h\) để
a) \(AC\) và \(DB\) vuông góc.
b) \[\widehat {AIB} = 90^\circ \] với \(I\) là trung điểm \(CD\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]
\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]
\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]
Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]
Và \[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .
Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].
Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].
b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\] và \[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].
Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]
\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]
Mà \[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];
\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\]; \[\overrightarrow {AD} \cdot \overrightarrow {BD} = \overrightarrow {AD} \left( {\overrightarrow {BA} + \overrightarrow {AD} } \right) = \overrightarrow {AD} \cdot \overrightarrow {BA} + {\overrightarrow {AD} ^2} = 0 + A{D^2} = {a^2}\].
Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Xét chữ nhật\(ABCD\) có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (áp dụng quy tắc hình bình hành).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC\).
Từ định lí Pythagore trong tam giác vuông \(ABC\), suy ra
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {3a} \right)}^2}} = a\sqrt {13} \).
Lời giải
+ Ta có \[\overrightarrow {AB} = \left( { - 1; - 1} \right) \Rightarrow 3\overrightarrow {AB} = \left( { - 3; - 3} \right)\]
\[\overrightarrow {AC} = \left( {3;2} \right) \Rightarrow - 4\overrightarrow {AC} = \left( { - 12; - 8} \right)\]
\[\overrightarrow {CE} = 3\overrightarrow {AB} - 4\overrightarrow {AC} = \left( { - 15; - 11} \right)\]
\( \Rightarrow \left\{ \begin{array}{l}{x_E} - {x_C} = - 15\\{y_E} - {y_C} = - 11\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_E} - 4 = - 15\\{y_E} - 5 = - 11\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_E} = - 11\\{y_E} = - 6\end{array} \right..\) Vậy \(E\left( { - 11; - 6} \right)\).
+ Ta có: \(\overrightarrow {AF} = \left( {{x_F} - 1;{y_F} - 3} \right)\)
\(\overrightarrow {BF} = \left( {{x_F} - 0;{y_F} - 2} \right) \Rightarrow 2\overrightarrow {BF} = \left( {2{x_F};2{y_F} - 4} \right)\)
\(\overrightarrow {CF} = \left( {{x_F} - 4;{y_F} - 5} \right) \Rightarrow - 4\overrightarrow {CF} = \left( { - 4{x_F} + 16; - 4{y_F} + 20} \right)\)
Vì \[\overrightarrow {AF} + 2\overrightarrow {BF} - 4\overrightarrow {CF} = \overrightarrow 0 \Leftrightarrow \]\[\left\{ \begin{array}{l}\left( {{x_F} - 1} \right) + 2{x_F} + \left( { - 4{x_F} + 16} \right) = 0\\\left( {{y_F} - 3} \right) + \left( {2{y_F} - 4} \right) + \left( { - 4{y_F} + 20} \right) = 0\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l} - {x_F} + 15 = 0\\ - {y_F} + 13 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_F} = 15\\{y_F} = 13\end{array} \right.\). Vậy \(F\left( {15;13} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.