Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét chữ nhật\(ABCD\) có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (áp dụng quy tắc hình bình hành).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC\).
Từ định lí Pythagore trong tam giác vuông \(ABC\), suy ra
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {3a} \right)}^2}} = a\sqrt {13} \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Vì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng nên \(\left( {\overrightarrow a ,\,\overrightarrow b } \right) = 180^\circ \).
Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = 2 \cdot 8 \cdot \cos 180^\circ = - 16\).
Câu 2
Lời giải
Đáp án đúng là: C

Vì hình vuông \(ABCD\) có tâm \(O\) nên hai đường chéo \(AC\) và \(BD\) vuông góc với nhau tại trung điểm \(O\) của mỗi đường.
Phương án A: \(\overrightarrow {OA} \bot \overrightarrow {OB} \) suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OB} = 0\) nên đáp án A đúng, loại A.
Phương án B: \(\overrightarrow {OA} \cdot \overrightarrow {OC} = - OA \cdot OC = - O{A^2}\)
và \(\frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - \frac{1}{2} \cdot OA \cdot AC = - \frac{1}{2}OA \cdot 2OA = - O{A^2}\).
Suy ra \(\overrightarrow {OA} \cdot \overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} \cdot \overrightarrow {AC} = - O{A^2}\) nên đáp án B đúng, loại B.
Phương án C và D: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = AB \cdot AC \cdot \cos 45^\circ = AB \cdot AB\sqrt 2 \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\).
\(\overrightarrow {AB} \cdot \overrightarrow {CD} = - AB \cdot DC = - A{B^2}\), \(\overrightarrow {AC} \cdot \overrightarrow {AD} = AC \cdot AD \cdot \cos 45^\circ = AB\sqrt 2 \cdot AB \cdot \frac{{\sqrt 2 }}{2} = A{B^2}\)
\( \Rightarrow \overrightarrow {AB} \cdot \overrightarrow {AC} \ne \overrightarrow {AB} \cdot \overrightarrow {CD} \), \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \overrightarrow {AC} \cdot \overrightarrow {AD} \) nên chọn C và loại D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.