Hai chiếc tàu thuỷ cùng xuất phát từ \(A\) đi thẳng theo hai hướng tạo với nhau một góc \(60^\circ \). Tàu thứ nhất chạy với tốc độ \(30km/h\). Tàu thứ hai đi với vận tốc \(40km/h\). Hỏi sau \(2h\) hai tàu cách nhau bao nhiêu \(km\)?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D

Giả sử hai tàu xuất phát từ \(A\) như hình vẽ, tàu thứ nhất sau \(2h\) đi đến \(B\), tàu thứ hai sau \(2h\) đi đến \(C\). Khoảng cách hai tàu lúc này là đoạn \(BC\).
Ta có: sau \(2h\) quãng đường tàu thứ nhất đi được là: \(AB = 2.30 = 60km\)
sau \(2h\) quãng đường tàu thứ hai đi được là: \(AC = 2.40 = 80km\)
Áp dụng định lí cosin ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A = {60^2} + {80^2} - 2.60.80.\cos 60^\circ \)
\( \Leftrightarrow BC = 20\sqrt {13} \)
Vậy hai tàu cách nhau \(20\sqrt {13} \left( {km} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có tam giác\(ABC\) vuông tại \(A\) và có \(AM\) là trung tuyến nên \(AM = \frac{{BC}}{2}\).\(AM = \frac{{BC}}{2} = \frac{{\sqrt {A{B^2} + A{C^2}} }}{2} = \frac{{\sqrt {{a^2} + 3{a^2}} }}{2} = a\).
Tam giác \(AMB\) có \(AB = BM = AM = a\) nên là tam giác đều. Suy ra góc \(\widehat {MAB} = 60^\circ \).
Ta có \[\overrightarrow {BA} .\overrightarrow {AM} = - \overrightarrow {AB} .\overrightarrow {AM} = - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.cos{\rm{(}}\overrightarrow {AB} \;,\;\overrightarrow {AM} ) = - a.a.cos{\rm{60}}^\circ = - \frac{{{a^2}}}{2}\].
Lời giải
Hướng dẫn giải

Qua điểm \(I\) dựng các đoạn \(MQ\parallel AB,PS\parallel BC,NR\parallel CA\).
Vì \(ABC\) là tam giác đều nên các tam giác \(IMN,IPQ,IRS\) cũng là tam giác đều.
Suy ra \(D,E,F\) lần lượt là trung điểm của \(MN,PQ,RS\).
Khi đó: \(\overrightarrow {ID} + \overrightarrow {IE} + \overrightarrow {IF} = \frac{1}{2}\left( {\overrightarrow {IM} + \overrightarrow {IN} } \right) + \frac{1}{2}\left( {\overrightarrow {IP} + \overrightarrow {IQ} } \right) + \frac{1}{2}\left( {\overrightarrow {IR} + \overrightarrow {IS} } \right)\)\( = \frac{1}{2}\left[ {\left( {\overrightarrow {IQ} + \overrightarrow {IR} } \right) + \left( {\overrightarrow {IM} + \overrightarrow {IS} } \right) + \left( {\overrightarrow {IN} + \overrightarrow {IP} } \right)} \right] = \frac{1}{2}\left( {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right)\)
\( = \frac{1}{2}.3\overrightarrow {IO} = \frac{3}{2}\overrightarrow {IO} \).
Vậy \(\overrightarrow {ID} + \overrightarrow {IE} + \overrightarrow {IF} = \frac{3}{2}\overrightarrow {IO} \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



