II. PHẦN TỰ LUẬN (3 ĐIỂM)
(1,0 điểm). Biểu đồ đoạn thẳng ở hình vẽ bên thể hiện tốc độ trăng trưởng GDP qua các năm từ 2012 đến 2019.

Tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
II. PHẦN TỰ LUẬN (3 ĐIỂM)
(1,0 điểm). Biểu đồ đoạn thẳng ở hình vẽ bên thể hiện tốc độ trăng trưởng GDP qua các năm từ 2012 đến 2019.

Tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
Quảng cáo
Trả lời:
Hướng dẫn giải
Tốc độ tăng trưởng trung bình là:
\(\overline x = \frac{{5,25 + 5,42 + 5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02}}{8} \approx 6,3\).
Phương sai của mẫu số liệu trên là:
\({S_x} = \frac{{{{\left( {5,25 - 6,3} \right)}^2} + {{\left( {5,42 - 6,3} \right)}^2} + {{\left( {5,98 - 6,3} \right)}^2} + {{\left( {6,68 - 6,3} \right)}^2}}}{8}\)
\(\frac{{{{\left( {6,21 - 6,3} \right)}^2} + {{\left( {6,81 - 6,3} \right)}^2} + {{\left( {7,08 - 6,3} \right)}^2} + {{\left( {7,02 - 6,3} \right)}^2}}}{8} \approx 0,44\).
\({s_x} = \sqrt {{S_x}} \approx \sqrt {0,44} \approx 0,66\).
Vậy phương sai và độ lệch chuẩn của mẫu số liệu trên là \(0,44\) và \(0,66\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \[ABC\] có:
\(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {AG} - 2\overrightarrow {AM} = \overrightarrow 0 \). Do đó C sai.
\(\overrightarrow {AG} = 2\overrightarrow {GM} \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GM} = \overrightarrow 0 \). Do đó A đúng và B sai.
\(\overrightarrow {GM} = \frac{1}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {GM} - \overrightarrow {AM} = \overrightarrow 0 \). Do đó D sai.
Lời giải
Hướng dẫn giải
Gọi hàm quỹ đạo parabol của quả bóng là \(h\left( t \right) = a{t^2} + bt + c\left( {a \ne 0} \right)\).
Quả bóng được đá lên từ độ cao \(1,2m\) nên \(t = 0\), ta có điểm \(\left( {0;\,\,1,2} \right)\), thay \(t = 0\) và \(h = 1,2\) vào hàm số trên ta được: \(c = 1,2\).
\( \Rightarrow h\left( t \right) = a{t^2} + bt + 1,2\) \(\left( 1 \right)\)
Tại \(t = 1\) thì \(h = 8,5\) khi đó \(\left( 1 \right) \Leftrightarrow a + b + 1,2 = 8,5 \Leftrightarrow a + b = 7,3\) \(\left( 2 \right)\).
Tại \(t = 2\) thì \(h = 6\) khi đó \(\left( 1 \right) \Leftrightarrow 4a + 2b + 1,2 = 6 \Leftrightarrow 4a + 2b = 4,8 \Leftrightarrow 2a + b = 2,4\) \(\left( 3 \right)\).
Từ \(\left( 2 \right)\) và \(\left( 3 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}a + b = 7,3\\2a + b = 2,4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 4,9\\b = 12,2\end{array} \right.\)(thỏa mãn điều kiện).
Do đó hàm số cần tìm là \(h\left( t \right) = - 4,9{t^2} + 12,2t + 1,2\).
Quả bóng chạm đất nghĩa là độ cao bằng \(0\) khi đó \(h = 0\), thay vào hàm số trên ta được:
\( - 4,9{t^2} + 12,2t + 1,2 = 0 \Leftrightarrow \left[ \begin{array}{l}t \approx 2,58\\t \approx - 0,09\end{array} \right.\).
Vì \(t > 0\) nên \(t \approx 2,58\) thỏa mãn.
Vậy sau khoảng \(2,58\) giây thì quả bóng chạm đất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.