Trong các dãy số sau, có bao nhiêu dãy số là cấp số cộng?
(a) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n\).
(b) Dãy số \(\left( {{v_n}} \right)\) với \({v_n} = 2{n^2} + 1\).
(c) Dãy số \(\left( {{w_n}} \right)\) với \({w_n} = \frac{n}{3} - 7\).
(d) Dãy số \(\left( {{t_n}} \right)\) với \({t_n} = \sqrt 5 - 5n\).
4.
3.
2.
1.
Quảng cáo
Trả lời:
Đáp án đúng là: B
a) Ta có \({u_{n + 1}} = 4\left( {n + 1} \right) = 4n + 4 = {u_n} + 4,\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng với công sai \(d = 4\).
b) Có \({v_1} = 2 \cdot {1^2} + 1 = 3\); \({v_2} = 2 \cdot {2^2} + 1 = 9\); \({v_3} = 2 \cdot {3^2} + 1 = 19\) nên dãy số \(\left( {{v_n}} \right)\) không là cấp số cộng.
c) Có \({w_{n + 1}} = \frac{{n + 1}}{3} - 7\)\( = \frac{n}{3} + \frac{1}{3} - 7\)\( = {w_n} + \frac{1}{3},\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{w_n}} \right)\)là một cấp số cộng với công sai \(d = \frac{1}{3}\).
d) Có \({t_{n + 1}} = \sqrt 5 - 5\left( {n + 1} \right)\)\( = \sqrt 5 - 5n - 5 = {t_n} - 5,\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{t_n}} \right)\) là một cấp số cộng với công sai \(d = - 5\).
Vậy có 3 dãy số là cấp số cộng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\).
\(\mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 2x + 3} \right)\).
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + x + 1}}{{x - 1}}\).
\(\mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x - 1}}{{4 - x}}\).
Lời giải
Đáp án đúng là: A
Xét \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\)
Ta có \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {2x - 1} \right) = 7 > 0\), \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\) và \(4 - x > 0\) với mọi \(x < 4\)
Do đó \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}} = + \infty \).
Câu 2
Đường thẳng \(EF\)song song với mặt phẳng \(\left( {SAC} \right)\).
Đường thẳng \(EF\) cắt đường thẳng \(AC\).
Đường thẳng \(AC\)song song với mặt phẳng \(\left( {BEF} \right)\).
Đường thẳng \(CD\) song song với mặt phẳng \(\left( {BEF} \right)\).
Lời giải
Đáp án đúng là: C

Vì \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\) nên \[EF{\rm{//}}AC\] mà \(EF \subset \left( {BEF} \right)\). Do đó \(AC{\rm{//}}\left( {BEF} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right) = + \infty \).
Nếu \(\lim {u_n} = a \ne 0\) và \(\lim {v_n} = \pm \infty \) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = 0\].
Nếu \(\lim {u_n} = a > 0\) và \(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \].
Nếu \(\lim {u_n} = a < 0\) và \(\lim {v_n} = 0\) và \({v_n} > 0,\forall n\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = - \infty \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\[\left[ {40;45} \right]\].
\[\left[ {45;50} \right]\].
\[\left[ {50;55} \right]\].
\[\left[ {55;60} \right]\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(m = - \frac{1}{2}\).
\(m = 2\).
\(m = 1\).
\(m = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Hàm số liên tục tại \(x = - 1\).
Hàm số liên tục tại \(x = 0\).
Hàm số liên tục tại \(x = 1\).
Hàm số liên tục tại \(x = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
