Câu hỏi:

20/11/2025 5 Lưu

Chọn câu đúng.

A.

Nếu ba mặt phẳng cắt nhau theo ba giao tuyến thì ba giao tuyến ấy đồng quy.

B.

Nếu hai mặt phẳng lần lượt chứa hai đường thẳng song song thì giao tuyến (nếu có) của chúng sẽ song song với cả hai đường thẳng đó.

C.

Nếu hai đường thẳng \(a\) và \(b\) chéo nhau thì có hai đường thẳng \(p\) và \(q\) song song với nhau mà mỗi đường đều cắt cả \(a\) và \(b\).

D.

Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

+) Nếu ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt thì có thể đôi một song song nhau ⇒ A sai.

+) Nếu hai mặt phẳng lần lượt chứa hai đường thẳng song song thì giao tuyến, nếu có, của chúng có thể trùng với một trong hai đường thẳng đó ⇒ B sai.

+) Giả sử: \(p\) cắt \(a\) và \(b\) lần lượt tại \(A\) và \(B\); \(q\) cắt \(a\) và \(b\) lần lượt tại \(A'\) và \(B'\).

Nếu \(p{\rm{//}}q\) thì 4 điểm \(A,B,A',B'\) đồng phẳng. Suy ra \(a\) và \(b\) đồng phẳng (mâu thuẫn với giả thiết) ⇒ C sai.

+) Hai đường thẳng chéo nhau nếu chúng không đồng phẳng ⇒ D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp  S . A B C D , đáy  A B C D  có  A D  và  B C  không song song với nhau. Lấy  I  thuộc  S A  sao cho  S A = 3 I A ,  J  thuộc  S C  và  M là trung điểm của  S B . (ảnh 1)

a) Gọi \(F\) là giao điểm của \(AD\) và \(BC\).

Có \(\left. \begin{array}{l}F \in AD \subset \left( {SAD} \right)\\F \in BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow F \in \left( {SAD} \right) \cap \left( {SBC} \right)\).

Mà \(S \in \left( {SAD} \right) \cap \left( {SBC} \right)\). Do đó \(\left( {SAD} \right) \cap \left( {SBC} \right) = SF\).

b) Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(IM \cap AB = E\).

Có \(E \in IM \subset \left( {IJM} \right)\). Suy ra \(E = AB \cap \left( {IJM} \right)\).

Lời giải

a) \(M = \tan 10^\circ \cdot \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ \cdot \tan 50^\circ \cdot \tan 60^\circ \cdot \tan 70^\circ \cdot \tan 80^\circ \)

\[M = \left( {\tan 10^\circ \cdot \tan 80^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \tan 70^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \tan 60^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \tan 50^\circ } \right)\]

\[M = \left( {\tan 10^\circ \cdot \cot 10^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \cot 20^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \cot 30^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \cot 40^\circ } \right)\]

\[M = 1 \cdot 1 \cdot 1 \cdot 1 = 1\].

b) \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right)\)\( = \tan \left( {\pi + \frac{\pi }{2} - \alpha } \right)\)\( = \tan \left( {\frac{\pi }{2} - \alpha } \right)\)\( = \cot \alpha \).

Mà \(\frac{\pi }{2} < \alpha < \pi \) nên \(\left. \begin{array}{l}\sin \alpha > 0\\\cos \alpha < 0\end{array} \right\} \Rightarrow \cot \alpha < 0\).

Vậy với \(\frac{\pi }{2} < \alpha < \pi \) thì \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) < 0\).

Câu 4

\({u_{n + 1}} = {u_n}\).

\({u_{n + 1}} \ge {u_n}\)

\({u_{n + 1}} < {u_n}\).

\({u_{n + 1}} > {u_n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP