Câu hỏi:

20/11/2025 4 Lưu

Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là

A.

\[152,2\].

B.

\[153,3\].

C.

\[154,1\].

D.

\[151,5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Số học sinh khối 10 được đo chiều cao là \(5 + 18 + 40 + 26 + 8 + 3 = 100\).

Giả sử \({x_1};{x_2};...;{x_{100}}\) là chiều cao của 100 học sinh lớp 10 xếp theo thứ tự không giảm.

Do \({x_1};...;{x_5} \in \left[ {150;152} \right)\) ; \({x_6};...;{x_{23}} \in \left[ {152;154} \right)\) ; \({x_{24}};...;{x_{63}} \in \left[ {154;156} \right)\) .

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\) mà \({x_{25}};{x_{26}} \in \left[ {154;156} \right)\).

Khi đó \(n = 100;{u_m} = 154;C = 23;{n_m} = 40;{u_{m + 1}} = 156\).

Do đó \({Q_1} = 154 + \frac{{\frac{{100}}{4} - 23}}{{40}}\left( {156 - 154} \right) = 154,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp  S . A B C D , đáy  A B C D  có  A D  và  B C  không song song với nhau. Lấy  I  thuộc  S A  sao cho  S A = 3 I A ,  J  thuộc  S C  và  M là trung điểm của  S B . (ảnh 1)

a) Gọi \(F\) là giao điểm của \(AD\) và \(BC\).

Có \(\left. \begin{array}{l}F \in AD \subset \left( {SAD} \right)\\F \in BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow F \in \left( {SAD} \right) \cap \left( {SBC} \right)\).

Mà \(S \in \left( {SAD} \right) \cap \left( {SBC} \right)\). Do đó \(\left( {SAD} \right) \cap \left( {SBC} \right) = SF\).

b) Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(IM \cap AB = E\).

Có \(E \in IM \subset \left( {IJM} \right)\). Suy ra \(E = AB \cap \left( {IJM} \right)\).

Lời giải

a) \(M = \tan 10^\circ \cdot \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ \cdot \tan 50^\circ \cdot \tan 60^\circ \cdot \tan 70^\circ \cdot \tan 80^\circ \)

\[M = \left( {\tan 10^\circ \cdot \tan 80^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \tan 70^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \tan 60^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \tan 50^\circ } \right)\]

\[M = \left( {\tan 10^\circ \cdot \cot 10^\circ } \right) \cdot \left( {\tan 20^\circ \cdot \cot 20^\circ } \right) \cdot \left( {\tan 30^\circ \cdot \cot 30^\circ } \right) \cdot \left( {\tan 40^\circ \cdot \cot 40^\circ } \right)\]

\[M = 1 \cdot 1 \cdot 1 \cdot 1 = 1\].

b) \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right)\)\( = \tan \left( {\pi + \frac{\pi }{2} - \alpha } \right)\)\( = \tan \left( {\frac{\pi }{2} - \alpha } \right)\)\( = \cot \alpha \).

Mà \(\frac{\pi }{2} < \alpha < \pi \) nên \(\left. \begin{array}{l}\sin \alpha > 0\\\cos \alpha < 0\end{array} \right\} \Rightarrow \cot \alpha < 0\).

Vậy với \(\frac{\pi }{2} < \alpha < \pi \) thì \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) < 0\).

Câu 4

\({u_{n + 1}} = {u_n}\).

\({u_{n + 1}} \ge {u_n}\)

\({u_{n + 1}} < {u_n}\).

\({u_{n + 1}} > {u_n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP