Câu hỏi:

20/11/2025 106 Lưu

Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là

A.

\[152,2\].

B.

\[153,3\].

C.

\[154,1\].

D.

\[151,5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Số học sinh khối 10 được đo chiều cao là \(5 + 18 + 40 + 26 + 8 + 3 = 100\).

Giả sử \({x_1};{x_2};...;{x_{100}}\) là chiều cao của 100 học sinh lớp 10 xếp theo thứ tự không giảm.

Do \({x_1};...;{x_5} \in \left[ {150;152} \right)\) ; \({x_6};...;{x_{23}} \in \left[ {152;154} \right)\) ; \({x_{24}};...;{x_{63}} \in \left[ {154;156} \right)\) .

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\) mà \({x_{25}};{x_{26}} \in \left[ {154;156} \right)\).

Khi đó \(n = 100;{u_m} = 154;C = 23;{n_m} = 40;{u_{m + 1}} = 156\).

Do đó \({Q_1} = 154 + \frac{{\frac{{100}}{4} - 23}}{{40}}\left( {156 - 154} \right) = 154,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\).

\(\mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 2x + 3} \right)\).

\(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + x + 1}}{{x - 1}}\).

\(\mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x - 1}}{{4 - x}}\).

Lời giải

Đáp án đúng là: A

Xét \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\)

Ta có \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {2x - 1} \right) = 7 > 0\), \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\) và \(4 - x > 0\) với mọi \(x < 4\)

Do đó \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}} = + \infty \).

Câu 2

Đường thẳng \(EF\)song song với mặt phẳng \(\left( {SAC} \right)\).

Đường thẳng \(EF\) cắt đường thẳng \(AC\).

Đường thẳng \(AC\)song song với mặt phẳng \(\left( {BEF} \right)\).

Đường thẳng \(CD\) song song với mặt phẳng \(\left( {BEF} \right)\).

Lời giải

Đáp án đúng là: C

Cho hình chóp  S . A B C D  có đáy là hình thang,  A B / / C D  và  A B = 2 C D . Lấy  E  thuộc cạnh  S A , (ảnh 1)

Vì \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\) nên \[EF{\rm{//}}AC\] mà \(EF \subset \left( {BEF} \right)\). Do đó \(AC{\rm{//}}\left( {BEF} \right)\).

Câu 4

A.

Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right) = + \infty \).

B.

Nếu \(\lim {u_n} = a \ne 0\) và \(\lim {v_n} = \pm \infty \) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = 0\].

C.

Nếu \(\lim {u_n} = a > 0\) và \(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \].

D.

Nếu \(\lim {u_n} = a < 0\) và \(\lim {v_n} = 0\) và \({v_n} > 0,\forall n\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = - \infty \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.

\[\left[ {40;45} \right]\].

B.

\[\left[ {45;50} \right]\].

C.

\[\left[ {50;55} \right]\].

D.

\[\left[ {55;60} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Hàm số liên tục tại \(x = - 1\).

Hàm số liên tục tại \(x = 0\).

Hàm số liên tục tại \(x = 1\).

Hàm số liên tục tại \(x = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP