Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là
\[152,2\].
\[153,3\].
\[154,1\].
\[151,5\].
Quảng cáo
Trả lời:
Đáp án đúng là: C
Số học sinh khối 10 được đo chiều cao là \(5 + 18 + 40 + 26 + 8 + 3 = 100\).
Giả sử \({x_1};{x_2};...;{x_{100}}\) là chiều cao của 100 học sinh lớp 10 xếp theo thứ tự không giảm.
Do \({x_1};...;{x_5} \in \left[ {150;152} \right)\) ; \({x_6};...;{x_{23}} \in \left[ {152;154} \right)\) ; \({x_{24}};...;{x_{63}} \in \left[ {154;156} \right)\) .
Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\) mà \({x_{25}};{x_{26}} \in \left[ {154;156} \right)\).
Khi đó \(n = 100;{u_m} = 154;C = 23;{n_m} = 40;{u_{m + 1}} = 156\).
Do đó \({Q_1} = 154 + \frac{{\frac{{100}}{4} - 23}}{{40}}\left( {156 - 154} \right) = 154,1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\).
\(\mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 2x + 3} \right)\).
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + x + 1}}{{x - 1}}\).
\(\mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x - 1}}{{4 - x}}\).
Lời giải
Đáp án đúng là: A
Xét \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}}\)
Ta có \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {2x - 1} \right) = 7 > 0\), \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\) và \(4 - x > 0\) với mọi \(x < 4\)
Do đó \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x - 1}}{{4 - x}} = + \infty \).
Câu 2
Đường thẳng \(EF\)song song với mặt phẳng \(\left( {SAC} \right)\).
Đường thẳng \(EF\) cắt đường thẳng \(AC\).
Đường thẳng \(AC\)song song với mặt phẳng \(\left( {BEF} \right)\).
Đường thẳng \(CD\) song song với mặt phẳng \(\left( {BEF} \right)\).
Lời giải
Đáp án đúng là: C

Vì \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\) nên \[EF{\rm{//}}AC\] mà \(EF \subset \left( {BEF} \right)\). Do đó \(AC{\rm{//}}\left( {BEF} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right) = + \infty \).
Nếu \(\lim {u_n} = a \ne 0\) và \(\lim {v_n} = \pm \infty \) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = 0\].
Nếu \(\lim {u_n} = a > 0\) và \(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \].
Nếu \(\lim {u_n} = a < 0\) và \(\lim {v_n} = 0\) và \({v_n} > 0,\forall n\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = - \infty \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\[\left[ {40;45} \right]\].
\[\left[ {45;50} \right]\].
\[\left[ {50;55} \right]\].
\[\left[ {55;60} \right]\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(m = - \frac{1}{2}\).
\(m = 2\).
\(m = 1\).
\(m = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Hàm số liên tục tại \(x = - 1\).
Hàm số liên tục tại \(x = 0\).
Hàm số liên tục tại \(x = 1\).
Hàm số liên tục tại \(x = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
