Câu hỏi:

20/11/2025 134 Lưu

Cho tứ diện \(ABCD\). Gọi hai điểm \(M,\,N\) lần lượt là trung điểm của các cạnh \(AB,\,AC\). Đường thẳng \(MN\) song song với mặt phẳng nào sau đây?

Mặt phẳng \(\left( {ABD} \right)\).

Mặt phẳng \(\left( {ACD} \right)\).

Mặt phẳng \(\left( {ABC} \right)\).

Mặt phẳng \(\left( {BCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho tứ diện  A B C D . Gọi hai điểm  M , N  lần lượt là trung điểm của các cạnh  A B , A C . Đường thẳng  M N  song song với mặt phẳng nào sau đây? (ảnh 1)

Vì \(M,\,N\) lần lượt là trung điểm của các cạnh \(AB,\,AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN{\rm{//}}BC\) mà \(BC \subset \left( {BCD} \right)\) nên \(MN{\rm{//}}\left( {BCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là mức lương của 110 nhân viên nhận được công ty trả trong 1 tháng.

Tứ phân vị thứ hai của dãy số liệu \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là \(\frac{1}{2}\left( {{x_{55}} + {x_{56}}} \right)\). Do \({x_{55}} \in \left[ {10;15} \right)\) và\({x_{56}} \in \left[ {15;20} \right)\). Nên đó tứ phân vị thứ hai của mẫu số liệu ghép nhóm là \({Q_2} = 15\).

Câu 2

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\).

\(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\).

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\).

\(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\).

Lời giải

Đáp án đúng là: C

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).

Có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{x} = 3 = f\left( 1 \right)\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) liên tục tại \(x = 1\).

Câu 4

A.

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}\).

B.

\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

C.

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = + \infty \).

D.

\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = \left| L \right|.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt[3]{{f\left( x \right)}} = \sqrt[3]{L}.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L .\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f\left( x \right)} \right] = - L.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(f\left( x \right) = \tan x + 5\).

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).

\(f\left( x \right) = \sqrt {x - 6} \).

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP