Hàm số nào sau đây gián đoạn tại \(x = 2\)?
\(y = \frac{{3x - 4}}{{x - 2}}\).
\(y = \sin x\).
\(y = {x^4} - 2{x^2} + 1.\)
\(y = \tan x.\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Hàm số \(y = \frac{{3x - 4}}{{x - 2}}\) có tập xác định là \(D = \mathbb{R}\backslash \left\{ 2 \right\}\) nên hàm số gián đoạn tại \(x = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\)
\( = \frac{{\tan \alpha + 3 \cdot \frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\)
\( = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}}\)
\( = \frac{{\frac{1}{{{{\cos }^2}x}} + 2}}{{\frac{1}{{{{\cos }^2}x}}}}\)
\( = 1 + 2{\cos ^2}x\).
Mà \(\cos \alpha = \frac{2}{3}\) nên \(A = 1 + 2 \cdot {\left( {\frac{2}{3}} \right)^2} = \frac{{17}}{9}\).
Lời giải

a) Ta có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\,\left( 1 \right)\)
Trong \(\left( {ABCD} \right)\), gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Khi đó \(\left\{ \begin{array}{l}O \in \left( {SAC} \right)\\O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(SO = \left( {SAC} \right) \cap \left( {SBD} \right).\)
b) Trong \(\left( {SAC} \right)\), gọi \(E\) là giao điểm của \(AN\) và \(SO\)
Trong \(\left( {SBD} \right)\), \(ME\)cắt \(SD\) tại \(K\) mà \(ME \in (A{\rm{MN}})\)
\( \Rightarrow K\) là giao điểm của \(\left( {AMN} \right)\) với \(SD\).
Xét tam giác \(SAC\) có \(SO\) và \(AN\) là các trung tuyến và \(SO \cap AN = E\)
Nên \(E\) là trọng tâm tam giác \(SAC\). Do đó \(SE = 2EO \Rightarrow \frac{{SE}}{{EO}} = 2\).
Mặt khác \(MS = 2MB \Rightarrow \frac{{MS}}{{MB}} = 2\).
Do \(\frac{{SE}}{{EO}} = \frac{{MS}}{{MB}} = 2\) \( \Rightarrow ME{\rm{//}}BO\) hay \(MK{\rm{//}}BD\) mà \(BD \subset \left( {ABCD} \right)\).
Suy ra \(MK{\rm{//}}\left( {ABCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}\left( \beta \right)\) và \(b//\left( \alpha \right).\)
\(a{\rm{//}}b \Rightarrow \left( \alpha \right){\rm{//}}\left( \beta \right).\)
a và b chéo nhau.
\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}b.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Hình lăng trụ có đáy là tam giác được gọi là lăng trụ tam giác.
Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ hộp.
Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác.
Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Kết quả khảo sát cân nặng của 25 quả cam ở lô hàng A được cho ở bảng sau:

Nhóm chứa mốt là nhóm nào?
\(\left[ {150;155} \right)\).
\(\left[ {155;160} \right)\).
\(\left[ {165;170} \right)\).
\(\left[ {170;175} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.