Câu hỏi:

20/11/2025 64 Lưu

Cho hình lăng trụ \(ABC.A'B'C'\). Gọi \(M,\,N,\,P\) theo thứ tự là trung điểm của các cạnh \[AA',\,BB',\,CC'\]. Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng nào trong các mặt phẳng sau đây?

\(\left( {BMN} \right)\).

\(\left( {ABC} \right)\).

\(\left( {A'C'C} \right)\).

\(\left( {BCA'} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho hình lăng trụ  A B C . A ′ B ′ C ′ . Gọi  M , N , P  theo thứ tự là trung điểm của các cạnh  A A ′ , B B ′ , C C ′ . Mặt phẳng  ( M N P )  song song với mặt phẳng nào trong các mặt phẳng sau đây? (ảnh 1)

Vì \(M,\,N,\,P\) theo thứ tự là trung điểm của các cạnh \[AA',\,BB',\,CC'\] nên \(MP{\rm{//}}AC,PN{\rm{//}}CB\).

Vì \(MP{\rm{//}}AC,AC \subset \left( {ABC} \right) \Rightarrow MP{\rm{//}}\left( {ABC} \right)\).

Vì \(PN{\rm{//}}CB,CB \subset \left( {ABC} \right) \Rightarrow PN{\rm{//}}\left( {ABC} \right)\).

Do đó \(\left( {MNP} \right){\rm{//}}\left( {ABC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Tổng số giáo viên được thống kê là \(3 + 6 + 8 + 7 = 24\).

Giả sử \({x_1};...;{x_{24}}\) là tiền lương của 24 giáo viên được xếp theo thứ tự không giảm.

Do \({x_1};...;{x_3} \in \left[ {6;8} \right)\);

\({x_4};...;{x_9} \in \left[ {8;10} \right)\);

\({x_{10}};...;{x_{17}} \in \left[ {10;12} \right)\);

\({x_{18}};...;{x_{24}} \in \left[ {12;14} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right)\) mà \({x_6};{x_7}\) thuộc nhóm \(\left[ {8;10} \right)\).

Ta xác định được \(n = 24;{n_m} = 6;C = 3;{u_m} = 8;{u_{m + 1}} = 10\).

Ta có \({Q_1} = 8 + \frac{{\frac{{24}}{4} - 3}}{6}\left( {10 - 8} \right) = 9\).

Lời giải

Đáp án đúng là: C

Ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x + 1}} = \frac{1}{2}\).

\(f\left( 1 \right) = a\).

Để hàm số liên tục tại \({x_0} = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP