Câu hỏi:

20/11/2025 120 Lưu

Cân nặng của học sinh lớp 11A được cho như bảng sau:

Cân nặng trung bình của học sinh lớp 11A gần nhất với giá trị nào dưới đây?

A.

\(51,81\).

B.

\(52,17\).

C.

\(51,2\).

D.

\(52\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \({x_1} = \frac{{40,5 + 45,5}}{2} = 43\) là giá trị đại diện của nhóm \(\left[ {40,5;45,5} \right)\).

\({x_2} = \frac{{45,5 + 50,5}}{2} = 48\) là giá trị đại diện của nhóm \(\left[ {45,5;50,5} \right)\).

\({x_3} = \frac{{50,5 + 55,5}}{2} = 53\) là giá trị đại diện của nhóm \(\left[ {50,5;55,5} \right)\).

\({x_4} = \frac{{55,5 + 60,5}}{2} = 58\) là giá trị đại diện của nhóm \(\left[ {55,5;60,5} \right)\).

\({x_5} = \frac{{60,5 + 65,5}}{2} = 63\) là giá trị đại diện của nhóm \(\left[ {60,5;65,5} \right)\).

\({x_6} = \frac{{65,5 + 70,5}}{2} = 68\) là giá trị đại diện của nhóm \(\left[ {65,5;70,5} \right)\).

Cân nặng trung bình của học sinh lớp 11A là

\(\frac{{43 \cdot 10 + 48 \cdot 7 + 53 \cdot 16 + 58 \cdot 4 + 63 \cdot 2 + 68 \cdot 3}}{{10 + 7 + 16 + 4 + 2 + 3}} \approx 51,81\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Tổng số giáo viên được thống kê là \(3 + 6 + 8 + 7 = 24\).

Giả sử \({x_1};...;{x_{24}}\) là tiền lương của 24 giáo viên được xếp theo thứ tự không giảm.

Do \({x_1};...;{x_3} \in \left[ {6;8} \right)\);

\({x_4};...;{x_9} \in \left[ {8;10} \right)\);

\({x_{10}};...;{x_{17}} \in \left[ {10;12} \right)\);

\({x_{18}};...;{x_{24}} \in \left[ {12;14} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right)\) mà \({x_6};{x_7}\) thuộc nhóm \(\left[ {8;10} \right)\).

Ta xác định được \(n = 24;{n_m} = 6;C = 3;{u_m} = 8;{u_{m + 1}} = 10\).

Ta có \({Q_1} = 8 + \frac{{\frac{{24}}{4} - 3}}{6}\left( {10 - 8} \right) = 9\).

Lời giải

Đáp án đúng là: C

Ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x + 1}} = \frac{1}{2}\).

\(f\left( 1 \right) = a\).

Để hàm số liên tục tại \({x_0} = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP