Câu hỏi:

20/11/2025 7 Lưu

Trong tuần lễ bảo vệ môi trường, các học sinh khối 11 tiến hành thu nhặt vỏ lon nước ngọt để tái chế. Nhà trường thống kê kết quả thu nhặt vỏ lon nước ngọt của học sinh khối 11 ở bảng sau:

Hãy tìm trung vị của mẫu số liệu ghép nhóm trên.

A.

\(19,82\).

B.

\(19,81\).

C.

\(19,18\).

D.

\(19,08\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Số học sinh tham gia thu nhặt vỏ lon nước ngọt là \(n = 58 + 87 + 54 + 44 + 23 = 266\).

Gọi \({x_1};\,{x_2};\,...;\,{x_{266}}\) lần lượt là số vỏ chai \(266\) học sinh khối 11 thu nhặt được xếp theo thứ tự không giảm.

Do \({x_1};\,{x_2};\,...;\,{x_{58}} \in \left[ {10,5;\,15,5} \right)\); \({x_{59}};\,{x_{55}};\,...;\,{x_{145}} \in \left[ {15,5;\,20,5} \right)\) nên trung vị của mẫu số liệu \({x_1};\,{x_2};\,...;\,{x_{266}}\) là \(\frac{1}{2}\left( {{x_{133}} + {x_{134}}} \right) \in \left[ {15,5;\,20,5} \right)\).

Ta xác định được \(n = 266,\,{n_m} = 87,\,C = 58,\,{u_m} = 15,5,\,{u_{m + 1}} = 20,5\).

Trung vị của mẫu số liệu ghép nhóm là

\({M_e} = 15,5 + \frac{{\frac{{266}}{2} - 58}}{{87}} \cdot \left( {20,5 - 15,5} \right) \approx 19,81\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\)

\( = \frac{{\tan \alpha + 3 \cdot \frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\)

\( = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}}\)

\( = \frac{{\frac{1}{{{{\cos }^2}x}} + 2}}{{\frac{1}{{{{\cos }^2}x}}}}\)

\( = 1 + 2{\cos ^2}x\).

Mà \(\cos \alpha = \frac{2}{3}\) nên \(A = 1 + 2 \cdot {\left( {\frac{2}{3}} \right)^2} = \frac{{17}}{9}\).

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành.  (a) Tìm giao tuyến của hai mặt phẳng  ( S A C )  và  ( S B D ) . (ảnh 1)

a) Ta có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\,\left( 1 \right)\)

Trong \(\left( {ABCD} \right)\), gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Khi đó \(\left\{ \begin{array}{l}O \in \left( {SAC} \right)\\O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(SO = \left( {SAC} \right) \cap \left( {SBD} \right).\)

b) Trong \(\left( {SAC} \right)\), gọi \(E\) là giao điểm của \(AN\) và \(SO\)

Trong \(\left( {SBD} \right)\), \(ME\)cắt \(SD\) tại \(K\) mà \(ME \in (A{\rm{MN}})\)

\( \Rightarrow K\) là giao điểm của \(\left( {AMN} \right)\) với \(SD\).

Xét tam giác \(SAC\) có \(SO\) và \(AN\) là các trung tuyến và \(SO \cap AN = E\)

Nên \(E\) là trọng tâm tam giác \(SAC\). Do đó \(SE = 2EO \Rightarrow \frac{{SE}}{{EO}} = 2\).

Mặt khác \(MS = 2MB \Rightarrow \frac{{MS}}{{MB}} = 2\).

Do \(\frac{{SE}}{{EO}} = \frac{{MS}}{{MB}} = 2\) \( \Rightarrow ME{\rm{//}}BO\) hay \(MK{\rm{//}}BD\) mà \(BD \subset \left( {ABCD} \right)\).

Suy ra \(MK{\rm{//}}\left( {ABCD} \right)\).

Câu 4

\( + \infty \).

\( - \infty \).

\(1\).

\(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}\left( \beta \right)\) và \(b//\left( \alpha \right).\)

\(a{\rm{//}}b \Rightarrow \left( \alpha \right){\rm{//}}\left( \beta \right).\)

a và b chéo nhau.

\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}b.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

Hình lăng trụ có đáy là tam giác được gọi là lăng trụ tam giác.

B.

Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ hộp.

C.

Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác.

D.

Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.

\(\left[ {150;155} \right)\).

B.

\(\left[ {155;160} \right)\).

C.

\(\left[ {165;170} \right)\).

D.

\(\left[ {170;175} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP