Cho \(\cos \alpha = \frac{2}{3}\). Tính \(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\).
Quảng cáo
Trả lời:
\(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\)
\( = \frac{{\tan \alpha + 3 \cdot \frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\)
\( = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}}\)
\( = \frac{{\frac{1}{{{{\cos }^2}x}} + 2}}{{\frac{1}{{{{\cos }^2}x}}}}\)
\( = 1 + 2{\cos ^2}x\).
Mà \(\cos \alpha = \frac{2}{3}\) nên \(A = 1 + 2 \cdot {\left( {\frac{2}{3}} \right)^2} = \frac{{17}}{9}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\,\left( 1 \right)\)
Trong \(\left( {ABCD} \right)\), gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Khi đó \(\left\{ \begin{array}{l}O \in \left( {SAC} \right)\\O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(SO = \left( {SAC} \right) \cap \left( {SBD} \right).\)
b) Trong \(\left( {SAC} \right)\), gọi \(E\) là giao điểm của \(AN\) và \(SO\)
Trong \(\left( {SBD} \right)\), \(ME\)cắt \(SD\) tại \(K\) mà \(ME \in (A{\rm{MN}})\)
\( \Rightarrow K\) là giao điểm của \(\left( {AMN} \right)\) với \(SD\).
Xét tam giác \(SAC\) có \(SO\) và \(AN\) là các trung tuyến và \(SO \cap AN = E\)
Nên \(E\) là trọng tâm tam giác \(SAC\). Do đó \(SE = 2EO \Rightarrow \frac{{SE}}{{EO}} = 2\).
Mặt khác \(MS = 2MB \Rightarrow \frac{{MS}}{{MB}} = 2\).
Do \(\frac{{SE}}{{EO}} = \frac{{MS}}{{MB}} = 2\) \( \Rightarrow ME{\rm{//}}BO\) hay \(MK{\rm{//}}BD\) mà \(BD \subset \left( {ABCD} \right)\).
Suy ra \(MK{\rm{//}}\left( {ABCD} \right)\).
Lời giải
Kí hiệu \({A_n},{B_n}\) lần lượt là số tiền công (đơn vị đồng) cần trả theo cách tính giá của cơ sở A và cơ sở B.
Theo giả thiết ta có:
+ \({A_n}\) là tổng \(n\) số hạng đầu tiên của cấp số cộng với số hạng đầu \({u_1} = 50\;000\) và công sai \(d = 10\;000\).
+ \({B_n}\) là tổng \(n\) số hạng đầu tiên của cấp số nhân với số hạng đầu \({v_1} = 50\;000\)và công bội \(q = 1,08\).
Do đó:
\[{A_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.50\;000 + 19.10\;000} \right) = 2\;900\;000.\]
\[{B_{20}} = {v_1}\frac{{1 - {q^{20}}}}{{1 - q}} = 50\;000 \times \frac{{1 - {{\left( {1,08} \right)}^{20}}}}{{1 - 1,08}} \approx 2\;288\;000.\]
\[{A_{40}} = \frac{{40\left( {2{u_1} + 39d} \right)}}{2} = 20\left( {2.50\;000 + 39.10\;000} \right) = 9\;800\;000.\]
\[{B_{40}} = {v_1}\frac{{1 - {q^{40}}}}{{1 - q}} = 50\;000 \times \frac{{1 - {{\left( {1,08} \right)}^{40}}}}{{1 - 1,08}} \approx 12\;953\;000.\]
Suy ra, chọn cơ sở B khoan giếng 20 mét và cơ sở A để khoan giếng 40 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(y = \frac{{3x - 4}}{{x - 2}}\).
\(y = \sin x\).
\(y = {x^4} - 2{x^2} + 1.\)
\(y = \tan x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}\left( \beta \right)\) và \(b//\left( \alpha \right).\)
\(a{\rm{//}}b \Rightarrow \left( \alpha \right){\rm{//}}\left( \beta \right).\)
a và b chéo nhau.
\(\left( \alpha \right){\rm{//}}\left( \beta \right) \Rightarrow a{\rm{//}}b.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Hình lăng trụ có đáy là tam giác được gọi là lăng trụ tam giác.
Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ hộp.
Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác.
Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.