Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \(y = 2{x^2} + x - 3\) có hệ số \(a = 2 > 0\), do đó đồ thị hàm số này có bề lõm hướng lên trên, điểm thấp nhất của đồ thị là đỉnh. Vậy hàm số đạt giá trị nhỏ nhất tại đỉnh.
Tung độ của đỉnh là \(y = - \frac{\Delta }{{4a}} = - \frac{{{1^2} - 4.2.\left( { - 3} \right)}}{{4.2}} = - \frac{{25}}{8}\).
Vậy hàm số đã cho có giá trị nhỏ nhất là \(\frac{{ - 25}}{8}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).
* Với ta có
Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).
Kết hợp với điều kiện \(m > - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán
* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m < - \frac{1}{2}\) ta có
Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le - 3\).
Kết hợp với điều kiện \(m < - \frac{1}{2}\) ta có \(m \le - 3\) thỏa mãn yêu cầu bài toán.
* Với \(m = - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\) nên \(m = - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.
Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} + 2\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + 3\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right) = 0\)
\( \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + 3\overrightarrow {AC} = 0 \Leftrightarrow \overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
