Câu hỏi:

21/11/2025 114 Lưu

Cho tam giác đều \[ABC\] cạnh bằng 5 và \(H\) là trung điểm của \(BC\). Khi đó, tích vô hướng \(\overrightarrow {AH} \cdot \overrightarrow {CA} \) bằng

A. \(\frac{{75}}{4}\);  
B. \( - \frac{{75}}{4}\);  
C. \(\frac{{75}}{2}\);       
D. \( - \frac{{75}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Dựng hình bình hành \(AHMC\), suy ra \(\overrightarrow {AH} = \overrightarrow {CM} \), kết hợp với giả thiết ta suy ra \(CM \bot BC\), khi đó \(\widehat {HCM} = 90^\circ \).

Tam giác \(ABC\) đều có cạnh bằng 5 nên suy ra \(AH = \frac{{5\sqrt 3 }}{2}\)\(\widehat {ACB} = 60^\circ \).

Ta có: \(\left( {\overrightarrow {AH} ,\,\,\overrightarrow {CA} } \right) = \left( {\overrightarrow {CM} ,\,\,\overrightarrow {CA} } \right) = \widehat {MCA} = \widehat {MCH} + \widehat {ACB} = 90^\circ + 60^\circ = 150^\circ \).

Khi đó, \(\overrightarrow {AH} \cdot \overrightarrow {CA} = \left| {\overrightarrow {AH} } \right| \cdot \left| {\overrightarrow {CA} } \right| \cdot \cos \left( {\overrightarrow {AH} ,\,\overrightarrow {CA} } \right) = \frac{{5\sqrt 3 }}{2} \cdot 5 \cdot \cos 150^\circ = - \frac{{75}}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).

* Với  m+2>4m33m+6>4mm>12 ta có

Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).

Kết hợp với điều kiện \(m > - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán

* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m < - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le - 3\).

Kết hợp với điều kiện \(m < - \frac{1}{2}\) ta có \(m \le - 3\) thỏa mãn yêu cầu bài toán.

* Với \(m = - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\) nên \(m = - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.

Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.

Câu 2

A. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);                                         
B. \(\overrightarrow {AI} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);               
C. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);                                             
D. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} + 2\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + 3\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right) = 0\)

\( \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + 3\overrightarrow {AC} = 0 \Leftrightarrow \overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).

Câu 3

Giá trị nhỏ nhất của hàm số \(y = 2{x^2} + x - 3\) là 

A. \(\frac{{ - 25}}{8}\);                                       
B. – 2;                                 
C. – 3;                              
D.\(\frac{{ - 21}}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) cùng hướng, biết \(\left| {\overrightarrow a } \right| = 5,\,\left| {\overrightarrow b } \right| = 3\). Giá trị \(\overrightarrow a \cdot \overrightarrow b \) bằng

A. – 15;                       
B. 15;                               
C. \(\frac{3}{5}\);            
D. \(\frac{5}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];                                    
B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);                                
C. \(S = \left( { - \infty ;\,\, - 2} \right) \cup \left( {\frac{1}{2};\,\, + \infty } \right)\);                    
D. \(S = \left( { - \frac{1}{2};\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP