Câu hỏi:

21/11/2025 59 Lưu

(1 điểm) Cho tam giác \(ABC\). Trên cạnh \(AB\) lấy điểm \(D\), trên cạnh \(BC\) lấy điểm \(E\) và điểm \(F\) sao cho \[\frac{{AD}}{{DB}} = \frac{3}{2}\], \[\frac{{BE}}{{EC}} = \frac{1}{3}\], \[\frac{{BF}}{{FC}} = \frac{4}{1}\]. Đường thẳng \(AE\) chia đoạn \(DF\) theo tỷ số \[\frac{{KD}}{{KF}} = k\]. Tính giá trị của \(k\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo giả thiết: \[\frac{{AD}}{{DB}} = \frac{3}{2} \Rightarrow \overrightarrow {AD} = \frac{3}{5}\overrightarrow {AB} \,\,\,\left( 1 \right)\]

Ta có: \[\frac{{BE}}{{EC}} = \frac{1}{3} \Rightarrow \overrightarrow {BE} = \frac{1}{4}\overrightarrow {BC} \].

Khi đó, \[\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{4}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{4}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \,\,\,\left( 2 \right)\]

Ta có: \[\frac{{BF}}{{FC}} = \frac{4}{1} \Rightarrow \overrightarrow {BF} = \frac{4}{5}\overrightarrow {BC} \]

Khi đó, \[\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{4}{5}\overrightarrow {BC} = \overrightarrow {AB} + \frac{4}{5}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \,\,\left( 3 \right)\]

\(A,\,\,K,\,E\) thẳng hàng nên \[\overrightarrow {AK} = m\overrightarrow {AE} \,\,\left( 4 \right)\]

\(D,\,K,\,F\) thẳng hàng nên DK=nDF DA+AK=nDA+AF

\[ \Leftrightarrow \overrightarrow {AK} = n\overrightarrow {AF} + \left( {1 - n} \right)\overrightarrow {AD} \,\,\,\left( 5 \right)\]

Từ \[\left( 2 \right)\]\[\left( 4 \right)\] suy ra: \[\overrightarrow {AK} = \frac{3}{4}m\overrightarrow {AB} + \frac{1}{4}m\overrightarrow {AC} \,\,\,\left( 6 \right)\]

Từ \[\left( 1 \right)\], \[\left( 3 \right)\]\[\left( 5 \right)\] suy ra: \[\overrightarrow {AK} = n\left[ {\frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} } \right] + \left( {1 - n} \right)\frac{3}{5}\overrightarrow {AB} \]

\[ \Rightarrow \overrightarrow {AK} = \left( {\frac{3}{5} - \frac{{2n}}{5}} \right)\overrightarrow {AB} + \frac{{4n}}{5}\overrightarrow {AC} \,\,\,\left( 7 \right)\]

Do hai vectơ \[\overrightarrow {AB} \], \[\overrightarrow {AC} \] không cùng phương nên từ \[\left( 6 \right)\],\[\left( 7 \right)\] ta có: \[\left\{ \begin{array}{l}\frac{{3m}}{4} = \frac{3}{5} - \frac{{2n}}{5}\\\frac{m}{4} = \frac{{4n}}{5}\end{array} \right.\]

\[ \Rightarrow \frac{1}{5} - \frac{{2n}}{{15}} = \frac{{4n}}{5} \Leftrightarrow n = \frac{3}{{14}}\]

Suy ra \[\overrightarrow {DK} = \frac{3}{{14}}\overrightarrow {DF} \Rightarrow \frac{{DK}}{{DF}} = \frac{3}{{14}} \Rightarrow \frac{{KD}}{{KF}} = k = \frac{3}{{11}}\].

Vậy \[k = \frac{3}{{11}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).

* Với  m+2>4m33m+6>4mm>12 ta có

Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).

Kết hợp với điều kiện \(m > - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán

* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m < - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le - 3\).

Kết hợp với điều kiện \(m < - \frac{1}{2}\) ta có \(m \le - 3\) thỏa mãn yêu cầu bài toán.

* Với \(m = - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\) nên \(m = - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.

Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.

Câu 2

A. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);                                         
B. \(\overrightarrow {AI} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);               
C. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);                                             
D. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} + 2\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + 3\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right) = 0\)

\( \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + 3\overrightarrow {AC} = 0 \Leftrightarrow \overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).

Câu 3

Giá trị nhỏ nhất của hàm số \(y = 2{x^2} + x - 3\) là 

A. \(\frac{{ - 25}}{8}\);                                       
B. – 2;                                 
C. – 3;                              
D.\(\frac{{ - 21}}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];                                    
B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);                                
C. \(S = \left( { - \infty ;\,\, - 2} \right) \cup \left( {\frac{1}{2};\,\, + \infty } \right)\);                    
D. \(S = \left( { - \frac{1}{2};\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác \[ABC\]\[G\] trọng tâm và \(I\) là trung điểm của đoạn thẳng \(BC\). Khẳng định nào sau đây là đúng?

A. GA=2GI;                                            
B. \[\overrightarrow {IG} = - \frac{1}{3}\overrightarrow {IA} \];                  
C. \[\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GI} \];                                       
D. \[\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} \]. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Nửa mặt phẳng không bị gạch (kể cả đường thẳng \(d\)) dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

Nửa mặt phẳng không bị gạch (kể cả đường thẳng (d) dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau? (ảnh 1)

A. \(2x + y \le 8\);      

B. \(2x + y > 8\);             
C. \(2x + y < 8\);                               
D. \(2x + y \ge 8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP