Câu hỏi:

22/11/2025 122 Lưu

Một sinh viên sau khi ra trường và xin vào làm cho một trung tâm với mức lương khởi điểm là 120 triệu đồng một năm. Cứ sau mỗi năm, trung tâm trả thêm cho sinh viên 24 triệu đồng. Gọi \({u_n}\) là số tiền lương mà sinh viên đó nhận được ở năm thứ \(n\).

a) Số tiền lương sinh viên nhận được ở năm thứ hai là 144 triệu đồng.
Đúng
Sai
b) Số tiền lương sinh viên nhận được ở năm thứ 10 là 330 triệu đồng.
Đúng
Sai
c) Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 20.
Đúng
Sai
d) Giả sử mỗi năm bạn sinh viên chi tiêu tiết kiệm hết 70 triệu đồng. Vậy sau ít nhất 10 năm thì sinh viên đó mua được căn chung cư 2 tỉ đồng.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta thấy số tiền lương năm sau hơn năm trước 24 triệu đồng nên số tiền lương hằng năm \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai \(d = 24\).

Do đó \({u_n} = {u_1} + \left( {n - 1} \right)d = 120 + \left( {n - 1} \right) \cdot 24 = 24n + 96\).

Số tiền lương sinh viên nhận được ở năm thứ hai là \({u_2} = 144\).

b) \({u_{10}} = 24 \cdot 10 + 96 = 336\).

c) Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 24.

d) Tổng số tiền bạn sinh viên tiết kiệm được sau n năm là:

\(S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n = \frac{n}{2}\left[ {2 \cdot 120 + \left( {n - 1} \right) \cdot 24} \right] - 70n\) \( = 12{n^2} + 38n\).

Ta có \(S \ge 2000 \Leftrightarrow 12{n^2} + 38n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 11,42\\n \le - 14,59\end{array} \right.\).

Do đó ít nhất sau 12 năm thì sinh viên đó có thể mua được căn chung cư 2 tỉ đồng.

Đáp án: a) Đúng;    b) Sai;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

u1qq+1q2q+1=3636q2q1q2q+1=48 u1qq+1q2q+1=363q2q1=4q2q+1 u1qq+1q2q+1=363q37q2+4q4=0 u122+1222+1=36q=2 u1=2q=2

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

Lời giải

Ta có \({u_2} = {u_1} + 2;{u_3} = {u_1} + 4;{u_4} = {u_1} + 6\).

Ta có \(u_2^2 + u_3^2 + u_4^2 = {\left( {{u_1} + 2} \right)^2} + {\left( {{u_1} + 4} \right)^2} + {\left( {{u_1} + 6} \right)^2}\)\( = 3u_1^2 + 24{u_1} + 56\)\( = 3\left( {u_1^2 + 8{u_1}} \right) + 56\)\( = 3{\left( {{u_1} + 4} \right)^2} + 8 \ge 8\).

Biểu thức \(u_2^2 + u_3^2 + u_4^2\) đạt giá trị nhỏ nhất khi \({u_1} = - 4\).

Khi đó \({u_n} = {u_1} + \left( {n - 1} \right)d = - 4 + \left( {n - 1} \right) \cdot 2 = 2n - 6\).

Theo đề ta có \({u_n} = 2026\)\( \Leftrightarrow 2n - 6 = 2026 \Leftrightarrow n = 1016\).

Số 2026 là số hạng thứ 1016 của cấp số cộng.

Trả lời: 1016.

Câu 3

a) \({u_2} = 630\).
Đúng
Sai
b) Giá tiền của chiếc ô tô qua các năm lập thành một cấp số cộng với công sai \(d = 50\).
Đúng
Sai
c) Giá của chiếc ô tô sau 3 năm sử dụng lớn hơn 500 triệu đồng.
Đúng
Sai
d) Sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá ban đầu của nó.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ \begin{array}{l}q = 2\\q = - 2\end{array} \right.\).                           
B. \(q = - 2\).              
C. \(q = 2\).                                   
D. \(q = \pm \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP