Câu hỏi:

22/11/2025 13 Lưu

B. Tự luận

Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề ta có \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} = 20\\u_1^2 + u_2^2 + u_3^2 + u_4^2 = 120\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4{u_1} + 6d = 20\\u_1^2 + {\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 2d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} = 120\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}4{u_1} + 6d = 20\\4u_1^2 + 12{u_1}d + 14{d^2} = 120\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{10 - 3d}}{2}\\4{\left( {\frac{{10 - 3d}}{2}} \right)^2} + 12\left( {\frac{{10 - 3d}}{2}} \right)d + 14{d^2} = 120\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{10 - 3d}}{2}\\100 - 60d + 9{d^2} + 60d - 18{d^2} + 14{d^2} = 120\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{10 - 3d}}{2}\\5{d^2} = 20\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{10 - 3d}}{2}\\d = \pm 2\end{array} \right.\).

Với \(d = 2\) thì \({u_1} = 2;{u_2} = 4;{u_3} = 6;{u_4} = 8\).

Với \(d = - 2\)thì \({u_1} = 8;{u_2} = 6;{u_3} = 4;{u_2} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Công bội của cấp số nhân là \(q = 3\).
Đúng
Sai
b) Số hạng thứ 6 của cấp số nhân là \({u_6} = 192\).
Đúng
Sai
c) Tổng 5 số hạng đầu tiên của cấp số nhân là 186.
Đúng
Sai
d) Công thức số hạng tổng quát của cấp số nhân là \({u_n} = 6 \cdot {3^{n - 1}}\).
Đúng
Sai

Lời giải

a) u4u2=36u5u3=72 u1q3u1q=36u1q4u1q2=72 u1qq21=36u1q2q21=72 u1=6q=2

b) \({u_6} = {u_1}{q^5} = 6 \cdot {2^5} = 192\).

c) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{6\left( {1 - {2^5}} \right)}}{{1 - 2}} = 186\).

d) Ta có \({u_n} = {u_1}{q^{n - 1}} = 6 \cdot {2^{n - 1}}\).

Đáp án: a) Sai;    b) Đúng;   c) Đúng;   d) Sai.

Câu 2

A. \({u_n} = \frac{n}{{n + 1}}\).                    
B. \({u_n} = {n^3}\).                           
C. \({u_n} = 2n\).        
D. \({u_n} = - {n^2}\).

Lời giải

Xét dãy \({u_n} = - {n^2}\).

Ta có \({u_{n + 1}} - {u_n} = - {\left( {n + 1} \right)^2} + {n^2} = - 2n - 1 < 0,\forall n \in {\mathbb{N}^*}\).

Do đó \({u_n} = - {n^2}\) là dãy số giảm. Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 620.                         
B. 280.                         
C. 360.                                  
D. 153.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = {n^2}\).  
B. \({u_n} = {2^n}\).  
C. \({u_n} = \frac{1}{{n + 1}}\).         
D. \({u_n} = \sqrt {n + 1} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ \begin{array}{l}q = 2\\q = - 2\end{array} \right.\).                           
B. \(q = - 2\).              
C. \(q = 2\).                                   
D. \(q = \pm \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP