Câu hỏi:

22/11/2025 6 Lưu

Cho \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + ax + 5} + x} \right) = 5\) thì giá trị của \(a\) là một nghiệm của phương trình nào trong các phương trình sau?    

A. \({x^2} - 8x + 15 = 0\).                               
B. \({x^2} - 11x + 10 = 0\).                 
C. \({x^2} + 9x - 10 = 0\).                                   
D. \({x^2} - 5x + 6 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + ax + 5} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ax + 5}}{{\sqrt {{x^2} + ax + 5} - x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ax + 5}}{{ - x\sqrt {1 + \frac{a}{x} + \frac{5}{{{x^2}}}} - x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{a + \frac{5}{x}}}{{ - \sqrt {1 + \frac{a}{x} + \frac{5}{{{x^2}}}} - 1}} = - \frac{a}{2}\).

Suy ra \( - \frac{a}{2} = 5 \Leftrightarrow a = - 10\).

Thay \(a = - 10\) vào phương trình \({x^2} - 11x + 10 = 0\) ta thấy thỏa mãn. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ giả thiết ta có \(\mathop {\lim }\limits_{x \to 2} \left( {f\left( x \right) - 20} \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = 20\).

\(T = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{6f\left( x \right) + 5 - 125}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\)

\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)}} \cdot \mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]

\[ = 6 \cdot 10 \cdot \frac{1}{{5 \cdot \left( {25 + 25 + 25} \right)}} \approx 0,2\].

Trả lời: 0,2.

Lời giải

a) \(\lim \frac{{{n^2} + 5n}}{{3{n^2} - 2n + 1}}\)\( = \lim \frac{{1 + \frac{5}{n}}}{{3 - \frac{2}{n} + \frac{1}{{{n^2}}}}} = \frac{1}{3}\).

b) \(\lim \frac{{{3^n} - 2 \cdot {4^n}}}{{5 \cdot {4^n} + {3^n}}}\)\( = \lim \frac{{{{\left( {\frac{3}{4}} \right)}^n} - 2}}{{5 + {{\left( {\frac{3}{4}} \right)}^n}}} = - \frac{2}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP