Câu hỏi:

22/11/2025 6 Lưu

Cho cấp số nhân \(\left( {{u_n}} \right)\)\({u_1} = 3\) và công bội \(q = - \frac{2}{3}\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\), với \(n \ge 1\). Giá trị \(\lim {S_n}\) bằng    

A. \(\frac{9}{5}\).        
B. \(\frac{6}{5}\).        
C. \( - \frac{6}{5}\).                   
D. \( - \frac{9}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({S_n} = 3 \cdot \frac{{1 - {{\left( { - \frac{2}{3}} \right)}^n}}}{{1 - \left( { - \frac{2}{3}} \right)}}\)\( = \frac{9}{5} \cdot \left[ {1 - {{\left( { - \frac{2}{3}} \right)}^n}} \right]\).

Suy ra \(\lim {S_n}\)\( = \lim \frac{9}{5} \cdot \left[ {1 - {{\left( { - \frac{2}{3}} \right)}^n}} \right] = \frac{9}{5}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ giả thiết ta có \(\mathop {\lim }\limits_{x \to 2} \left( {f\left( x \right) - 20} \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = 20\).

\(T = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{6f\left( x \right) + 5 - 125}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\)

\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)}} \cdot \mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]

\[ = 6 \cdot 10 \cdot \frac{1}{{5 \cdot \left( {25 + 25 + 25} \right)}} \approx 0,2\].

Trả lời: 0,2.

Lời giải

a) \(\lim \frac{{{n^2} + 5n}}{{3{n^2} - 2n + 1}}\)\( = \lim \frac{{1 + \frac{5}{n}}}{{3 - \frac{2}{n} + \frac{1}{{{n^2}}}}} = \frac{1}{3}\).

b) \(\lim \frac{{{3^n} - 2 \cdot {4^n}}}{{5 \cdot {4^n} + {3^n}}}\)\( = \lim \frac{{{{\left( {\frac{3}{4}} \right)}^n} - 2}}{{5 + {{\left( {\frac{3}{4}} \right)}^n}}} = - \frac{2}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP