Câu hỏi:

22/11/2025 19 Lưu

Cho \(f\left( x \right)\) là đa thức thỏa mãn \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}} = 10\). Tính \(T = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}}\) (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ giả thiết ta có \(\mathop {\lim }\limits_{x \to 2} \left( {f\left( x \right) - 20} \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = 20\).

\(T = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{6f\left( x \right) + 5 - 125}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\)

\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]\[ = \mathop {\lim }\limits_{x \to 2} \frac{{6\left[ {f\left( x \right) - 20} \right]}}{{\left( {x - 2} \right)}} \cdot \mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {x + 3} \right)\left[ {{{\left( {\sqrt[3]{{6f\left( x \right) + 5}}} \right)}^2} + 5\sqrt[3]{{6f\left( x \right) + 5}} + 25} \right]}}\]

\[ = 6 \cdot 10 \cdot \frac{1}{{5 \cdot \left( {25 + 25 + 25} \right)}} \approx 0,2\].

Trả lời: 0,2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\lim \frac{{{n^2} + 5n}}{{3{n^2} - 2n + 1}}\)\( = \lim \frac{{1 + \frac{5}{n}}}{{3 - \frac{2}{n} + \frac{1}{{{n^2}}}}} = \frac{1}{3}\).

b) \(\lim \frac{{{3^n} - 2 \cdot {4^n}}}{{5 \cdot {4^n} + {3^n}}}\)\( = \lim \frac{{{{\left( {\frac{3}{4}} \right)}^n} - 2}}{{5 + {{\left( {\frac{3}{4}} \right)}^n}}} = - \frac{2}{5}\).

Lời giải

Tập xác định: \(D = \mathbb{R}\).

Ta có:

Trên khoảng \(( - \infty ;1)\): \(f\left( x \right) = 2x + 4\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(( - \infty ;1)\).

Trên khoảng \((1; + \infty )\): \(f\left( x \right) = {x^3} + x + 1\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \((1; + \infty )\).

Tại điểm\({x_0} = 1\), ta có: \(f(1) = {1^3} + 1 + 1 = 3\);

\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} (2x + 4) = 6\); \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} ({x^3} + x + 1) = 3\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ - }} f(x)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f(x)\). Vậy hàm số không liên tục tại điểm \({x_0} = 1\).

Tóm lại \(f\left( x \right)\) liên tục trên khoảng \(( - \infty ;1)\)\((1; + \infty )\) và gián đoạn tại điểm \({x_0} = 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP