Câu hỏi:

24/11/2025 43 Lưu

Cho tứ diện \(ABCD.\) Gọi \(M,N\) lần lượt là trung điểm của \(BA,BC.\) Trong các đường thẳng sau, đường nào song song với \(MN\)?

A. \(AB\).                  
B. \(AD\).                
C. \(AC\).                       
D. \(BD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Chọn A Dựa vào các điểm đi qua của đồ thị ta có kết luận, đây là đồ thị hàm số \(y = \sin x\). (ảnh 1)

Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN//AC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{SN}}{{SC}} = \frac{4}{7}\).   
B. \(\frac{{SN}}{{SC}} = \frac{3}{5}\).        
C. \(\frac{{SN}}{{SC}} = \frac{1}{2}\).        
D. \(\frac{{SN}}{{SC}} = \frac{2}{3}\).

Lời giải

Chọn B

Lại có \(2IJ = AB + CD (ảnh 1)

Gọi \(AB \cap CD = K\) và \(KM\) cắt \(SC\) tại \(N\)

Khi đó \(\left( {ABM} \right) \cap SC = N\)

Do \(AB{\rm{//}}DC \Rightarrow \frac{{KC}}{{KD}} = \frac{{BC}}{{AD}} = \frac{1}{3}\)

Kẻ đường thẳng qua \(C{\rm{//}}SD\) cắt \(MK\) tại \(L\)

Ta có \(\frac{{LC}}{{MD}} = \frac{{KC}}{{KD}} = \frac{1}{3}\) ( hệ quả Talet )

Mặt khác \(LC{\rm{//}}SM\) nên theo Talet ta có:

\(\frac{{NC}}{{NS}} = \frac{{LC}}{{SM}} = \frac{{2LC}}{{MD}} = \frac{2}{3}\) ( do giả thiết \(SM = \frac{1}{3}SD \Rightarrow DM = 2SM\) )

Vì \(\frac{{NC}}{{NS}} = \frac{2}{3} \Rightarrow \frac{{SN}}{{SC}} = \frac{3}{5}\).

Lời giải

Cho hình chóp \[S.ABCD\] có đáy (ảnh 1)

a) Ta có \[MN\] là đường trung bình trong tam giác \(SDC\) nên \(MN\,{\rm{//}}\,CD\).

Do \[AB\,{\rm{//}}\,CD\] nên \[MN\,{\rm{//}}\,AB\].

b) Ta có \(\left\{ {\begin{array}{*{20}{c}}{S \in \left( {SAB} \right) \cap \left( {SCD} \right)}\\{AB\,{\rm{//}}\,CD}\\{AB \subset \left( {SAB} \right)}\\{CD \subset \left( {SCD} \right)}\end{array}} \right.\)

Nên \(\left( {SAB} \right) \cap \left( {SCD} \right) = d\) với \[d\] là đường thẳng qua \(S\) và \[d\,{\rm{//}}\,AB\,{\rm{//}}\,CD\].

Trong \(\left( {SCD} \right)\), gọi \(E\) là giao điểm của \(d\) và \(DM\).

Mà \(d \subset \left( {SAB} \right)\) nên \[E = DM \cap \left( {SAB} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(b\) chứa hai điểm phân biệt thuộc \(\left( P \right)\) thì \(b\) nằm trong \(\left( P \right).\)
B. Nếu \(a\) và \(b\) cùng nằm trong \(\left( P \right)\) thì \(a\) cắt \(b.\)
C. Nếu \(a\) nằm trong \(\left( P \right)\) và \(a\) cắt \(b\) thì \(b\) nằm trong \(\left( P \right).\)
D. Nếu \(a\) chứa một điểm trong \(\left( P \right)\) thì \(a\) nằm trong \(\left( P \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({230^0} + k{360^0}\).                       
B. \({50^0} + k{360^0}\).            
C. \({150^0} + k{360^0}\).               
D. \( - {230^0} + k{360^0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP