Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà. Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng \[30^\circ \]. Sau \[6\] phút, người quan sát vẫn nhìn thấy người điều khiển chiếc xe máy với phương nhìn tạo với phương nằm ngang một góc bằng \[60^\circ \]. Hỏi sau bao nhiêu phút nữa thì xe máy sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi.
Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà. Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng \[30^\circ \]. Sau \[6\] phút, người quan sát vẫn nhìn thấy người điều khiển chiếc xe máy với phương nhìn tạo với phương nằm ngang một góc bằng \[60^\circ \]. Hỏi sau bao nhiêu phút nữa thì xe máy sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi.
Quảng cáo
Trả lời:
Ta mô hình hóa bài toán như hình vẽ sau:

Do mặt đất là phương ngang nên \[\widehat {BCA} = \widehat {CBx} = 30^\circ \] và \[\widehat {BDA} = \widehat {ABx} - \widehat {DBx} = 90^\circ - 30^\circ = 60^\circ \].
Xét \[\Delta ABC\] vuông tại \[A\], ta có:
\[AC = AB \cdot \cot \widehat {BCA} = AB \cdot \cot 30^\circ = AB\sqrt 3 \].
Xét \[\Delta ABD\] vuông tại \[A\], ta có:
\[AD = AB \cdot \cot \widehat {BDA} = AB \cdot \cot 60^\circ = \frac{{AB\sqrt 3 }}{3}\].
Suy ra \[CD = AC - AD = AB\sqrt 3 - \frac{{AB\sqrt 3 }}{3} = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) = AB \cdot \frac{{2\sqrt 3 }}{3} = \frac{{2AB\sqrt 3 }}{3} = 2AD\].
Như vậy, quãng đường \(CD\) gấp đôi quãng đường \(DA.\) Mà thời gian di chuyển tỉ lệ thuận với quãng đường đi được khi vận tốc không đổi nên thời gian xe máy di chuyển từ \(C\) đến \(D\) gấp đôi thời gian xe máy di chuyển từ \(D\) về \(A\).
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{6}{2} = 3\] (phút).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (gam) và \(y\) (gam) lần lượt là khối lượng dung dịch muối ăn với nồng độ \(5\% \) và \(20\% \) cần dùng \(\left( {0 < x < 1\,\,000,\,\,0 < y < 1\,\,000} \right)\).
Theo bài, cần pha trộn hai dung dịch trên để được \(1\,\,000\) g dung dịch muối ăn mới nên ta có phương trình \(x + y = 1\,\,000\). (1)
Khối lượng muối ăn trong \(x\) (gam) dung dịch muối ăn \(5\% \) là \(5\% \cdot x = 0,05x\) (gam).
Khối lượng muối ăn trong \(y\) (gam) dung dịch muối ăn \(20\% \) là \(20\% \cdot x = 0,2x\) (gam).
Khối lượng muối ăn trong \(1\,\,000\) gam dung dịch muối ăn \(14\% \) là \(1\,\,000 \cdot 14\% = 140\) (gam).
Khi đó, ta có phương trình: \(0,05x + 0,2y = 140\). (2)
Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\,\,000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\0,05x + 0,2y = 140\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình (2) với 5, ta được hệ mới là \(\left\{ \begin{array}{l}x + y = 1\,\,000\\0,25x + y = 700\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(0,75x = 300,\) suy ra \(x = 400\) (thỏa mãn).
Thay \(x = 400\) vào phương trình (1), ta được: \(400 + y = 1\,\,000\) suy ra \(y = 600\) (thỏa mãn).
Vậy cần trộn \(400\) gam dung dịch muối ăn \(5\% \) với \(600\) gam dung dịch muối ăn \(20\% \) để được \(1\,\,000\) gam dung dịch muối ăn \(14\% .\)
Lời giải
a) \[\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\]
\(2x + 9 = 0\) hoặc \[\frac{2}{3}x - 5 = 0\]
\(2x = - 9\) hoặc \(\frac{2}{3}x = 5\)
\(x = - \frac{9}{2}\) hoặc \(x = \frac{{15}}{2}\).
Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{9}{2};\,\,x = \frac{{15}}{2}\).b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (không thỏa mãn) hoặc \(x = - 2\) (thỏa mãn).
Vậy nghiệm phương trình đã cho là \(x = - 2\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.