Tính giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {4{n^2} + 9n - 1} - 3n} \right)\)
Tính giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {4{n^2} + 9n - 1} - 3n} \right)\)
Quảng cáo
Trả lời:
\(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {4{n^2} + 9n - 1} - 3n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } n\left( {\sqrt {4 + \frac{3}{n} - \frac{1}{{{n^2}}}} - 3} \right) = - \infty \)
vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{n \to + \infty } n = + \infty \\\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {4 + \frac{9}{n} - \frac{1}{{{n^2}}}} - 3} \right) = \sqrt 4 - 3 = - 1 < 0\end{array} \right.\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {5f\left( x \right) - 3g\left( x \right)} \right] = 5\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\mathop { - 3\lim }\limits_{x \to {x_0}} g\left( x \right) = 5.2 - 3.3 = 1\).
Câu 2
Lời giải
Chọn D
Ta có \[x \to {2^ - } \Leftrightarrow \left\{ \begin{array}{l}x \to 2\\x < 2\end{array} \right.\] nên \(\left( {2x - 3} \right) \to 1 > 0\) và \(x - 2 \to 0\) và âm do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x - 3}}{{x - 2}} = - \infty \)
Lưu ý: Dùng MTBT.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

