Câu hỏi:

27/11/2025 10 Lưu

Dạng 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = {\log _3}x\).

a) Tập xác định của hàm số là \(D = \left( {0; + \infty } \right)\).

Đúng
Sai

b) Phương trình \({\log _3}x = 1\) có nghiệm \(x = 1\).

Đúng
Sai

c) Bất phương trình \({\log _3}x < 2\) có tập nghiệm là \(\left( {0;8} \right)\).

Đúng
Sai
d) Có đúng 80 điểm \(M\left( {{x_0};{y_0}} \right)\) có tọa độ nguyên thuộc đồ thị hàm số \(y = {\log _3}x\) và nằm dưới đường thẳng \(y = 4\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện \(x > 0\).

Tập xác định của hàm số là \(D = \left( {0; + \infty } \right)\).

b) \({\log _3}x = 1\)\( \Leftrightarrow x = 3\).

c) \({\log _3}x < 2 \Leftrightarrow x < 9\).

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình \(\left( {0;9} \right)\).

d) Ta có \({\log _3}x < 4 \Leftrightarrow x < {3^4} = 81\).

Mà \(x > 0,x \in \mathbb{Z}\) nên \(x \in \left\{ {1;2;3;...;80} \right\}\).

Để \(y \in \mathbb{Z}\) thì \(x \in \left\{ {1;3;9;27} \right\}\).

Vậy có 4 điểm M có tọa nguyên thỏa mãn yêu cầu đề bài.

Đáp án: a) Đúng;      b) Sai;      c) Sai;       d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ban đầu có 1000 vi khuẩn nên \({P_0} = 1000\).

Sau hai ngày, số lượng vi khuẩn là \(P = 125\%  \cdot 1000 = 1250\).

Ta có \(P\left( 2 \right) = 1000 \cdot {a^2} \Leftrightarrow 1250 = 1000 \cdot {a^2} \Leftrightarrow {a^2} = \frac{5}{4} \Rightarrow a \approx 1,12\).

b) Số lượng vi khuẩn sau 5 ngày là \(P\left( 5 \right) = 1000 \cdot {\left( {1,12} \right)^5} \approx 1800\).

c) Với \(P\left( t \right) = 2{P_0} \Leftrightarrow 2{P_0} = {P_0} \cdot {1,12^t} \Leftrightarrow {1,12^t} = 2 \Leftrightarrow t = {\log _{1,12}}2 \approx 6,1\) ngày.

Vậy sau 6,1 ngày thì số lượng vi khuẩn bằng gấp đôi số lượng ban đầu.

Lời giải

Ta có \(f\left( x \right) + f\left( {1 - x} \right) = \frac{1}{2}{\log _2}\left( {\frac{{2x}}{{1 - x}}} \right) + \frac{1}{2}{\log _2}\left( {\frac{{2\left( {1 - x} \right)}}{{1 - \left( {1 - x} \right)}}} \right)\)\( = \frac{1}{2}{\log _2}\frac{{2x}}{{1 - x}} + \frac{1}{2}{\log _2}\frac{{2\left( {1 - x} \right)}}{x}\)

\( = \frac{1}{2}{\log _2}\left[ {\frac{{2x}}{{1 - x}} \cdot \frac{{2\left( {1 - x} \right)}}{x}} \right]\)\( = \frac{1}{2}{\log _2}4 = 1\).

Ta có \(S = \left[ {f\left( {\frac{1}{{2025}}} \right) + f\left( {\frac{{2024}}{{2025}}} \right)} \right] + \left[ {f\left( {\frac{2}{{2025}}} \right) + f\left( {\frac{{2023}}{{2025}}} \right)} \right] + ... + \left[ {f\left( {\frac{{1012}}{{2025}}} \right) + f\left( {\frac{{1013}}{{2025}}} \right)} \right] = 1012\).

Câu 3

A. \(y = {e^{ - x}}\). 

B. \(y = {e^x}\).                
C. \(y = \ln x\). 
D. \[y = \log x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Hàm số \(y = {\log _{\frac{e}{2}}}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

b) Hàm số \(y = {\log _{\frac{1}{2}}}x\) nghịch biến trên tập xác định của hàm số đó.

Đúng
Sai

c) Hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) là hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

Đúng
Sai
d) Tọa độ giao điểm của đồ thị hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) và đường thẳng \(y = \frac{1}{4}\) là \(\left( {2;\frac{1}{4}} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x =  - 4\).  

B. \(x =  - 2\). 
C. \(x = 2\).
D. \(x =  - \frac{3}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP