Câu hỏi:

27/11/2025 26 Lưu

Biết rằng, có tồn tại \(m \in \left( {a;b} \right)\) để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt. Tổng \(a + b\) có giá trị bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\)\( \Leftrightarrow 2 \cdot {2^{2x}} - {2^3} \cdot {2^x} - 2m = 0\)\( \Leftrightarrow 2 \cdot {2^{2x}} - 8 \cdot {2^x} - 2m = 0\).

Đặt \(t = {2^x},t > 0\). Khi đó phương trình trở thành \(2{t^2} - 8t - 2m = 0\) (*).

Để phương trình có hai nghiệm phân biệt thì phương trình (*) có hai nghiệm dương phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 16 + 4m > 0\\S > 0\\P > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m >  - 4\\ - m > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m >  - 4\\m < 0\end{array} \right.\)\( \Leftrightarrow  - 4 < m < 0\).

Suy ra \(a =  - 4;b = 0\). Do đó \(a + b =  - 4\).

Trả lời: −4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

Ta có \(f\left( x \right) + f\left( {1 - x} \right) = \frac{1}{2}{\log _2}\left( {\frac{{2x}}{{1 - x}}} \right) + \frac{1}{2}{\log _2}\left( {\frac{{2\left( {1 - x} \right)}}{{1 - \left( {1 - x} \right)}}} \right)\)\( = \frac{1}{2}{\log _2}\frac{{2x}}{{1 - x}} + \frac{1}{2}{\log _2}\frac{{2\left( {1 - x} \right)}}{x}\)

\( = \frac{1}{2}{\log _2}\left[ {\frac{{2x}}{{1 - x}} \cdot \frac{{2\left( {1 - x} \right)}}{x}} \right]\)\( = \frac{1}{2}{\log _2}4 = 1\).

Ta có \(S = \left[ {f\left( {\frac{1}{{2025}}} \right) + f\left( {\frac{{2024}}{{2025}}} \right)} \right] + \left[ {f\left( {\frac{2}{{2025}}} \right) + f\left( {\frac{{2023}}{{2025}}} \right)} \right] + ... + \left[ {f\left( {\frac{{1012}}{{2025}}} \right) + f\left( {\frac{{1013}}{{2025}}} \right)} \right] = 1012\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\log _a}b > c \Leftrightarrow b > c\).   

B. \({\log _a}b > {\log _a}c \Leftrightarrow b > c\). 

C. \({a^b} > {a^c} \Leftrightarrow b > c\). 
D. \[{\log _a}b < {\log _a}c \Leftrightarrow b < c\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\log _{15}}4 = \frac{{a + b}}{2}\). 

B. \({\log _{15}}4 = \frac{2}{{a - b}}\).  
C. \({\log _{15}}4 = \frac{{a - b}}{2}\).  
D. \({\log _{15}}4 = \frac{2}{{a + b}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP