Câu hỏi:

27/11/2025 38 Lưu

Cho các số thực \(x,y\) thỏa mãn \({\log _{{x^2} + {y^2} + 2}}\left( {2x - 4y + 3} \right) \ge 1\). Giá trị lớn nhất của biểu thức \(P = 3x + 4y\) có dạng \(5\sqrt M  + m\) với \(M,m \in \mathbb{Z}\). Tính tổng \(M + m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\log _{{x^2} + {y^2} + 2}}\left( {2x - 4y + 3} \right) \ge 1\)\( \Leftrightarrow 2x - 4y + 3 \ge {x^2} + {y^2} + 2\)\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} \le 6\) là hình tròn (C) tâm \(I\left( {1; - 2} \right)\), bán kính \(R = \sqrt 6 \).

Ta lại có \(P = 3x + 4y \Rightarrow 3x + 4y - P = 0\) là phương trình đường thẳng d.

Để tồn tại cặp số \(x,y\) sao cho \(P\) đạt giá trị lớn nhất thì đường thẳng \(d\) và đường tròn \(\left( C \right)\) phải có điểm chung.

Khi đó \(d\left( {I,\left( d \right)} \right) \le R \Leftrightarrow \frac{{\left| {3 - 8 - P} \right|}}{5} \le \sqrt 6 \)\( \Leftrightarrow \left| {P + 5} \right| \le 5\sqrt 6 \)\( \Leftrightarrow  - 5\sqrt 6  \le P + 5 \le 5\sqrt 6 \)

\( \Leftrightarrow  - 5\sqrt 6  - 5 \le P \le 5\sqrt 6  - 5\).

Do đó \({P_{\max }} = 5\sqrt 6  - 5 \Rightarrow M = 6;m =  - 5\).

Vậy \(M + m = 6 + \left( { - 5} \right) = 1\).

Trả lời: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

Ta có \(f\left( x \right) + f\left( {1 - x} \right) = \frac{1}{2}{\log _2}\left( {\frac{{2x}}{{1 - x}}} \right) + \frac{1}{2}{\log _2}\left( {\frac{{2\left( {1 - x} \right)}}{{1 - \left( {1 - x} \right)}}} \right)\)\( = \frac{1}{2}{\log _2}\frac{{2x}}{{1 - x}} + \frac{1}{2}{\log _2}\frac{{2\left( {1 - x} \right)}}{x}\)

\( = \frac{1}{2}{\log _2}\left[ {\frac{{2x}}{{1 - x}} \cdot \frac{{2\left( {1 - x} \right)}}{x}} \right]\)\( = \frac{1}{2}{\log _2}4 = 1\).

Ta có \(S = \left[ {f\left( {\frac{1}{{2025}}} \right) + f\left( {\frac{{2024}}{{2025}}} \right)} \right] + \left[ {f\left( {\frac{2}{{2025}}} \right) + f\left( {\frac{{2023}}{{2025}}} \right)} \right] + ... + \left[ {f\left( {\frac{{1012}}{{2025}}} \right) + f\left( {\frac{{1013}}{{2025}}} \right)} \right] = 1012\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\log _a}b > c \Leftrightarrow b > c\).   

B. \({\log _a}b > {\log _a}c \Leftrightarrow b > c\). 

C. \({a^b} > {a^c} \Leftrightarrow b > c\). 
D. \[{\log _a}b < {\log _a}c \Leftrightarrow b < c\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{13}}{6}\). 

B. \(\frac{5}{6}\). 
C. \( - \frac{5}{6}\). 
D. \[\frac{{ - 13}}{6}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP