Cho đường thẳng \(a\) song song với mặt phẳng \(\left( \alpha \right)\). Nếu mặt phẳng \(\left( \beta \right)\) chứa \(a\) và cắt \(\left( \alpha \right)\) theo giao tuyến \(b\) thì và là hai đường thẳng
Cho đường thẳng \(a\) song song với mặt phẳng \(\left( \alpha \right)\). Nếu mặt phẳng \(\left( \beta \right)\) chứa \(a\) và cắt \(\left( \alpha \right)\) theo giao tuyến \(b\) thì và là hai đường thẳng
D. Song song với nhau.
Quảng cáo
Trả lời:
Chọn D
Ta có đường thẳng \(a\) song song với mặt phẳng \(\left( \alpha \right)\). Và mặt phẳng \(\left( \beta \right)\) chứa \(a\) và cắt \(\left( \alpha \right)\) theo giao tuyến \(b\) thì và là hai đường thẳng song song với nhau
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
TXĐ: \(D = \mathbb{R}\) và \({x_0} = 2 \in \mathbb{R}\)
Ta có \(f\left( 2 \right) = - 2m + 2023\)
Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} \right) = 1.\)
Hàm số liên tục tại \({x_0} = 2\) khi \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right).\]
\( \Leftrightarrow - 2m + 2023 = 1 \Leftrightarrow m = 1011.\)
Lời giải
Ta có diện tích của tam giác \({A_1}{B_1}{C_1}\) là \({S_1} = {4^2}.\frac{{\sqrt 3 }}{4} = 4\sqrt 3 .\)
Với cách xác định như trên ta có tam giác \({A_2}{B_2}{C_2}\) là tam giác đều có cạnh bằng 2 nên ta có \({S_2} = {2^2}.\frac{{\sqrt 3 }}{4} = \sqrt 3 .\)
Tiếp tục quá trình như trên thì ta có \({S_1},\,{S_2},\,...\) lập thành 1 cấp số nhân lùi vô hạn với \({S_1} = 4\sqrt 3 \) và công bội \(q = \frac{1}{4}.\)
Khi đó ta có \(S = {S_1} + {S_2} + ... = \frac{{{S_1}}}{{1 - q}} = \frac{{4\sqrt 3 }}{{1 - \frac{1}{4}}} = \frac{{16\sqrt 3 }}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
