Cho tam giác đều \({A_1}{B_1}{C_1}\) có cạnh bằng \(a = 4\) và có diện tích \({S_1}.\) Nối các trung điểm các cạnh được tam giác đều \({A_2}{B_2}{C_2}\) và có diện tích \({S_2}\) (như hình vẽ). Tiếp tục như thế ta được dãy các tam giác đều. Tính tổng \(S = {S_1} + {S_2} + ...\)
Cho tam giác đều \({A_1}{B_1}{C_1}\) có cạnh bằng \(a = 4\) và có diện tích \({S_1}.\) Nối các trung điểm các cạnh được tam giác đều \({A_2}{B_2}{C_2}\) và có diện tích \({S_2}\) (như hình vẽ). Tiếp tục như thế ta được dãy các tam giác đều. Tính tổng \(S = {S_1} + {S_2} + ...\)

Quảng cáo
Trả lời:
Ta có diện tích của tam giác \({A_1}{B_1}{C_1}\) là \({S_1} = {4^2}.\frac{{\sqrt 3 }}{4} = 4\sqrt 3 .\)
Với cách xác định như trên ta có tam giác \({A_2}{B_2}{C_2}\) là tam giác đều có cạnh bằng 2 nên ta có \({S_2} = {2^2}.\frac{{\sqrt 3 }}{4} = \sqrt 3 .\)
Tiếp tục quá trình như trên thì ta có \({S_1},\,{S_2},\,...\) lập thành 1 cấp số nhân lùi vô hạn với \({S_1} = 4\sqrt 3 \) và công bội \(q = \frac{1}{4}.\)
Khi đó ta có \(S = {S_1} + {S_2} + ... = \frac{{{S_1}}}{{1 - q}} = \frac{{4\sqrt 3 }}{{1 - \frac{1}{4}}} = \frac{{16\sqrt 3 }}{3}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
TXĐ: \(D = \mathbb{R}\) và \({x_0} = 2 \in \mathbb{R}\)
Ta có \(f\left( 2 \right) = - 2m + 2023\)
Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} \right) = 1.\)
Hàm số liên tục tại \({x_0} = 2\) khi \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right).\]
\( \Leftrightarrow - 2m + 2023 = 1 \Leftrightarrow m = 1011.\)
Câu 2
D. Song song với nhau.
Lời giải
Chọn D
Ta có đường thẳng \(a\) song song với mặt phẳng \(\left( \alpha \right)\). Và mặt phẳng \(\left( \beta \right)\) chứa \(a\) và cắt \(\left( \alpha \right)\) theo giao tuyến \(b\) thì và là hai đường thẳng song song với nhau
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.