Câu hỏi:

05/12/2025 160 Lưu

Cho tam giác đều \({A_1}{B_1}{C_1}\) có cạnh bằng \(a = 4\) và có diện tích \({S_1}.\) Nối các trung điểm các cạnh được tam giác đều \({A_2}{B_2}{C_2}\) và có diện tích \({S_2}\) (như hình vẽ). Tiếp tục như thế ta được dãy các tam giác đều. Tính tổng \(S = {S_1} + {S_2} + ...\)

Cho tam giác đều A_1, B_1, C_1 có cạnh bằng a = 4 và có diện tích S_1 (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có diện tích của tam giác \({A_1}{B_1}{C_1}\)\({S_1} = {4^2}.\frac{{\sqrt 3 }}{4} = 4\sqrt 3 .\)

Với cách xác định như trên ta có tam giác \({A_2}{B_2}{C_2}\) là tam giác đều có cạnh bằng 2 nên ta có \({S_2} = {2^2}.\frac{{\sqrt 3 }}{4} = \sqrt 3 .\)

Tiếp tục quá trình như trên thì ta có \({S_1},\,{S_2},\,...\) lập thành 1 cấp số nhân lùi vô hạn với \({S_1} = 4\sqrt 3 \) và công bội \(q = \frac{1}{4}.\)

Khi đó ta có \(S = {S_1} + {S_2} + ... = \frac{{{S_1}}}{{1 - q}} = \frac{{4\sqrt 3 }}{{1 - \frac{1}{4}}} = \frac{{16\sqrt 3 }}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TXĐ: \(D = \mathbb{R}\)\({x_0} = 2 \in \mathbb{R}\)

Ta có \(f\left( 2 \right) = - 2m + 2023\)

Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} \right) = 1.\)

Hàm số liên tục tại \({x_0} = 2\) khi \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right).\]

\( \Leftrightarrow - 2m + 2023 = 1 \Leftrightarrow m = 1011.\)

Lời giải

Chọn D

Ta có đường thẳng \(a\) song song với mặt phẳng \(\left( \alpha \right)\). Và mặt phẳng \(\left( \beta \right)\) chứa \(a\) và cắt \(\left( \alpha \right)\) theo giao tuyến \(b\) thì    là hai đường thẳng song song với nhau

Câu 3

A. 5.  
B. 3.       
C. 4.      
D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({u_3} = \frac{1}{8}\).  
B. \({u_5} = \frac{1}{{16}}\)              
C. \({u_5} = \frac{1}{{32}}\).  
D. \({u_4} = \frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3\).     
B. \( - \infty \).         
C. \( + \infty \).      
D. \(\frac{7}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP