Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a\) và chiều cao bằng \(2a\). Gọi \(M\) là trung điểm của \(BC\). Khoảng cách giữa hai đường thẳng \(AM\) và \(B'C'\) bằng
Quảng cáo
Trả lời:

Do \(ABC.A'B'C'\) là lăng trụ đều nên \(\left\{ \begin{array}{l}AA' \bot \left( {A'B'C'} \right) \Rightarrow AA' \bot B'C'\\AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AM\end{array} \right.\).
Do đó \(d\left( {AM,B'C'} \right) = AA' = 2a\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Vì \(ABCD.A'B'C'D'\) là hình lăng trụ đều nên \(BD \bot AC\) và \(BD \bot AA'\). Do đó \(BD \bot \left( {ACC'A'} \right)\).
b) Ta có \(\left( {ADD'} \right) \cap \left( {ACC'A'} \right) = AA'\) mà \(AC \bot AA',AD \bot AA'\) nên
\(\left( {\left( {ADD'} \right),\left( {ACC'A'} \right)} \right) = \left( {AD,AC} \right) = \widehat {DAC} = 45^\circ \).
c) Ta có \(AC' = \sqrt {{a^2} + {a^2} + 3{a^2}} = a\sqrt 5 \); \(AB' = \sqrt {{a^2} + 3{a^2}} = 2a\); \(B'C' = a\). Suy ra \(\Delta AB'C'\) vuông tại \(B'\).
Vì \(BC//B'C'\) nên \(BC//\left( {ADC'B'} \right)\).
Khi đó \(d\left( {BC,\left( {ADC'B'} \right)} \right) = d\left( {B,\left( {AB'C'} \right)} \right) = d\).
Ta có \({V_{B.AB'C'}} = \frac{1}{3}d \cdot {S_{AB'C'}} = {V_{A.BB'C'}} = \frac{1}{3}AB \cdot \frac{1}{2}BB' \cdot B'C' = \frac{1}{3} \cdot a \cdot \frac{1}{2} \cdot a\sqrt 3 \cdot a = \frac{{{a^3}\sqrt 3 }}{6}\).
\(d = \frac{{\frac{{{a^3}\sqrt 3 }}{2}}}{{{S_{AB'C'}}}} = \frac{{\frac{{{a^3}\sqrt 3 }}{2}}}{{\frac{1}{2} \cdot 2a \cdot a}} = \frac{{a\sqrt 3 }}{2}\).
d) \({V_{ABC.A'B'C'}} = BB'.{S_{ABC}} = a\sqrt 3 \cdot \frac{1}{2} \cdot a \cdot a = \frac{{{a^3}\sqrt 3 }}{2}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
A. \(45^\circ \).
Lời giải
Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(\left( {BA',CD} \right) = \left( {BA',BA} \right) = \widehat {A'BA} = 45^\circ \). Chọn A.
Câu 3
A. \(H\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

