Câu hỏi:

05/12/2025 49 Lưu

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a\) và chiều cao bằng \(2a\). Gọi \(M\) là trung điểm của \(BC\). Khoảng cách giữa hai đường thẳng \(AM\)\(B'C'\) bằng     

A. \(2a\).                            
B. \(a\sqrt 3 \).                 
C. \(a\).      
D. \(a\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do đó \(d\left( {AM,B'C'} \ri (ảnh 1)

Do \(ABC.A'B'C'\) là lăng trụ đều nên \(\left\{ \begin{array}{l}AA' \bot \left( {A'B'C'} \right) \Rightarrow AA' \bot B'C'\\AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AM\end{array} \right.\).

Do đó \(d\left( {AM,B'C'} \right) = AA' = 2a\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(BD \bot \left( {ACC'A'} \right)\).
Đúng
Sai
b) \(\left( {ADD'} \right) \bot \left( {ACC'A'} \right)\).
Đúng
Sai
c) Khoảng cách giữa đường thẳng \(BC\) và mặt phẳng \(\left( {ADC'B'} \right)\) bằng \(\frac{{a\sqrt 2 }}{3}\).
Đúng
Sai
d) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(\frac{{{a^3}\sqrt 3 }}{2}\).
Đúng
Sai

Lời giải

Đáp án: a) Đúng;    b) Sai;   c) (ảnh 1)

a) Vì \(ABCD.A'B'C'D'\) là hình lăng trụ đều nên \(BD \bot AC\) và \(BD \bot AA'\). Do đó \(BD \bot \left( {ACC'A'} \right)\).

b) Ta có \(\left( {ADD'} \right) \cap \left( {ACC'A'} \right) = AA'\) mà \(AC \bot AA',AD \bot AA'\) nên

\(\left( {\left( {ADD'} \right),\left( {ACC'A'} \right)} \right) = \left( {AD,AC} \right) = \widehat {DAC} = 45^\circ \).

c) Ta có \(AC' = \sqrt {{a^2} + {a^2} + 3{a^2}} = a\sqrt 5 \); \(AB' = \sqrt {{a^2} + 3{a^2}} = 2a\); \(B'C' = a\). Suy ra \(\Delta AB'C'\) vuông tại \(B'\).

Vì \(BC//B'C'\) nên \(BC//\left( {ADC'B'} \right)\).

Khi đó \(d\left( {BC,\left( {ADC'B'} \right)} \right) = d\left( {B,\left( {AB'C'} \right)} \right) = d\).

Ta có \({V_{B.AB'C'}} = \frac{1}{3}d \cdot {S_{AB'C'}} = {V_{A.BB'C'}} = \frac{1}{3}AB \cdot \frac{1}{2}BB' \cdot B'C' = \frac{1}{3} \cdot a \cdot \frac{1}{2} \cdot a\sqrt 3 \cdot a = \frac{{{a^3}\sqrt 3 }}{6}\).

\(d = \frac{{\frac{{{a^3}\sqrt 3 }}{2}}}{{{S_{AB'C'}}}} = \frac{{\frac{{{a^3}\sqrt 3 }}{2}}}{{\frac{1}{2} \cdot 2a \cdot a}} = \frac{{a\sqrt 3 }}{2}\).

d) \({V_{ABC.A'B'C'}} = BB'.{S_{ABC}} = a\sqrt 3 \cdot \frac{1}{2} \cdot a \cdot a = \frac{{{a^3}\sqrt 3 }}{2}\).

Đáp án: a) Đúng;    b) Sai;   c) Sai;    d) Đúng.

Câu 2

A. \(45^\circ \).                      

B. \(60^\circ \).                 
C. \(30^\circ \).      
D. \(90^\circ \).

Lời giải

\(ABCD.A'B'C'D'\) là hình lập phương nên \(\left( {BA',CD} \right) = \left( {BA',BA} \right) = \widehat {A'BA} = 45^\circ \). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hình hộp có các cạnh bằng nhau gọi là hình lập phương.     
B. Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.     
C. Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy.     
D. Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP