Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(BB'\) vuông góc với đáy, \(BB' = 2a\). Gọi \(M\) là trung điểm của \(BC\), gọi \(\varphi \) là góc giữa đường thẳng \(A'M\) và mặt phẳng \(\left( {A'B'C'} \right)\). Tính \(\tan \varphi \) (làm tròn đến hàng phần trăm).
Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(BB'\) vuông góc với đáy, \(BB' = 2a\). Gọi \(M\) là trung điểm của \(BC\), gọi \(\varphi \) là góc giữa đường thẳng \(A'M\) và mặt phẳng \(\left( {A'B'C'} \right)\). Tính \(\tan \varphi \) (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:

Từ giả thiết suy ra \(ABC.A'B'C'\) là hình lăng trụ đứng.
Gọi \(M'\) là trung điểm của \(B'C'\).
Suy ra \(MM'//BB'\) mà \(BB' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot \left( {A'B'C'} \right)\).
Do đó \(A'M'\) là hình chiếu của \(A'M\) lên mặt phẳng \(\left( {A'B'C'} \right)\).
Do đó \(\left( {A'M,\left( {A'B'C'} \right)} \right) = \left( {A'M,A'M'} \right) = \widehat {MA'M'}\).
Ta có \(\Delta A'B'C'\) đều cạnh \(a\) nên \(A'M' = \frac{{a\sqrt 3 }}{2}\), \(MM' = BB' = 2a\).
Vì \(MM' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot A'M'\).
Xét \(\Delta A'M'M\) vuông tại \(M'\) , có \(\tan \widehat {MA'M'} = \frac{{MM'}}{{A'M'}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{4}{{\sqrt 3 }} \approx 2,31\).
Trả lời: 2,31.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(H\).
Lời giải
Lời giải
Có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot AH\).
Lại có \(AH \bot SB\) nên \(AH \bot \left( {SBC} \right)\).
Do đó \(H\) là hình chiếu của \(A\) lên mặt phẳng \(\left( {SBC} \right)\). Chọn A.
Lời giải

Gọi độ dài cạnh của hình hộp chữ nhật như hình vẽ.
Theo đề ta có: \(ab = 15;bc = 24;ac = 40\).
Suy ra \[{\left( {abc} \right)^2} = 15 \cdot 24 \cdot 40 = 14400 \Rightarrow abc = 120\].
Vậy thể tích khối hộp chữ nhật là 120 cm3.
Trả lời: 120.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
