Một loại vi khuẩn sau mỗi phút số lượng tăng gấp đôi, biết rằng sau 5 phút người ta đếm được có 64000 con. Hỏi sau bao nhiêu phút thì có được 2048000 con?
Một loại vi khuẩn sau mỗi phút số lượng tăng gấp đôi, biết rằng sau 5 phút người ta đếm được có 64000 con. Hỏi sau bao nhiêu phút thì có được 2048000 con?
Quảng cáo
Trả lời:
Gọi \(x_0^{}\)là số vi khuẩn ban đầu; \({x_n}\) là số vi khuẩn phút thứ \(n\).
Sau mỗi phút số lượng tăng gấp đôi nên \({x_{n + 1}} = 2{x_n},{\rm{ }}n \in \mathbb{N}.\)
Suy ra, số vi khuẩn sau phút thứ nhất, phút thứ 2,…, phút thứ n \(\left( {n \in \mathbb{N}*} \right)\)lập thành cấp số nhân với \({u_1} = 2{x_{\scriptstyle0\atop\scriptstyle}}\) và công bội \(q = 2\).
Ta có \({u_5} = 2{x_0}{.2^4}\)\( \Leftrightarrow 64000 = 2{x_0}{.2^4}\)\( \Leftrightarrow {x_0} = 2000\).
Theo yêu cầu bài toán thì \({u_n} = {2.2000.2^{n - 1}} = 2048000 \Leftrightarrow n = 10\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

b) Trong mặt phẳng \[\left( {ABCD} \right)\], gọi \[I = AB \cap CD\]\[ \Rightarrow I \in AB \subset \left( {ABM} \right)\];
Trong mặt phẳng \[\left( {SCD} \right)\], gọi \[N = IM \cap SC\] và \[K\] là trung điểm \[IM\].
Ta có: \[\frac{{IC}}{{ID}} = \frac{{BC}}{{AD}} = \frac{1}{2}\]
Trong tam giác \[IMD\] có \[KC\] là đường trung bình nên \[KC\,{\rm{//}}\,MD\] và\[KC = \frac{1}{2}MD\]
Mà \[SM = \frac{1}{2}MD\]\[ \Rightarrow SM = KC\].
Lại có \[KC\,{\rm{//}}\,SM\left( {{\rm{do }}M \in SD} \right)\]\[ \Rightarrow \frac{{SN}}{{NC}} = \frac{{SM}}{{KC}} = 1\].
Vậy \[\frac{{SN}}{{SC}} = \frac{1}{2}\].
Câu 2
Lời giải
Chọn C
Xét câu A, hàm số xác định khi \(x \ne 0\) nên liên tục trên \({D_1} = \mathbb{R}{\rm{\backslash }}\left\{ 0 \right\}\).
Xét câu B, hàm số xác định khi \(x - 1 \ge 0 \Leftrightarrow x \ge 1\) nên liên tục trên \({D_2} = \left[ {1; + \infty } \right)\).
Xét câu C, hàm số đã cho là hàm đa thức liên tục trên \(\mathbb{R}\).
Xét câu D, hàm số xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\) nên liên tục trên \({D_3} = \mathbb{R}{\rm{\backslash }}\left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.
C.
D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
