Câu hỏi:

11/12/2025 13 Lưu

    Cho hai mặt phẳng song song \(\left( \alpha \right)\)\(\left( \beta \right)\). Khẳng định nào sau đây đúng?

A. \(\left( \alpha \right)\)\(\left( \beta \right)\) có 2 điểm chung.  
B. \(\left( \alpha \right)\)\(\left( \beta \right)\)có duy nhất một điểm chung
C. \(\left( \alpha \right)\)\(\left( \beta \right)\) không có điểm chung         
D. \(\left( \alpha \right)\)\(\left( \beta \right)\) có vô số điểm chung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Hai mặt phẳng song song \(\left( \alpha \right)\)\(\left( \beta \right)\)thì \(\left( \alpha \right)\)\(\left( \beta \right)\) không có điểm chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n + 1} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 3n + 1 - {n^2}}}{{\sqrt {{n^2} + 3n + 1} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n + 1}}{{\sqrt {{n^2} + 3n + 1} + n}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n} + \frac{1}{{{n^2}}}} + 1}} = \frac{3}{2}\)

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)}}{{ - \left( {x + 2} \right)}} = - \frac{1}{4}\)

Câu 2

A. \(T = \frac{{a + 2}}{8}\).     
B. \(T = \frac{{a + 2}}{{16}}\).     
C. \(T = \frac{{a - 2}}{{16}}\)
D. \(T = \frac{{a - 2}}{8}\).

Lời giải

Chọn C

Nếu \(f\left( 2 \right) \ne - 1 \Rightarrow \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{x - 2}} = \infty \) ( mâu thuẫn giả thiết )

Do đó \(f\left( 2 \right) = - 1\)

Ta có \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}} = T\)và ta có

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1 + 2x - {x^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \frac{a}{{4.\left( {2 + 2} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x}}{{\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} = \frac{a}{{16}} - \frac{2}{{4\left( {2 + 2} \right)}} = \frac{a}{{16}} - \frac{1}{8} = \frac{{a - 2}}{{16}}\end{array}\)

Hay là \(T = \frac{{a - 2}}{{16}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \sin x\).       
B. \(y = \frac{1}{x}\). 
C. \(y = \sqrt x \).      
D. \(y = \tan x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số liên tục tại \(x = - 1.\)      
 B. Hàm số liên tục tại \(x = \frac{1}{2}\).   
C. Hàm số liên tục tại \(x = 0\).          
D. Hàm số liên tục tại\(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {BCD} \right)\).        
B. \(\left( {ABC} \right)\).  
C. \(\left( {ACD} \right)\).   
 D. \(\left( {ABD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP