Biết tổng \(S = - 2 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}} + ...\) có kết quả bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{Z}\) và \(\frac{a}{b}\) là phân số tối giản. Tích \(a.b\) bằng
Quảng cáo
Trả lời:
Chọn A
Xét dãy số \({u_n} = {\left( {\frac{1}{3}} \right)^n}{\rm{ }}\) \(\left( {n \in {N^*}} \right)\)là 1 cấp số nhân lùi vô hạn với công bội \(0 < q = \frac{1}{3} < 1\)
Tổng \({S_n} = {u_1} + {u_2} + {u_3} + .... + {u_n}\)khi đó \({S_n} = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{1}{3}}}{{1 - \frac{1}{3}}} = \frac{1}{2}\)
Vậy \(S = - 2 + \frac{1}{2} = \frac{{ - 3}}{2}\)nên \(a = - 3;b = 2\) do đó \(a.b = \left( { - 3} \right).2 = - 6\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n + 1} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 3n + 1 - {n^2}}}{{\sqrt {{n^2} + 3n + 1} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n + 1}}{{\sqrt {{n^2} + 3n + 1} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n} + \frac{1}{{{n^2}}}} + 1}} = \frac{3}{2}\)
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)}}{{ - \left( {x + 2} \right)}} = - \frac{1}{4}\)
Câu 2
Lời giải
Chọn C
Nếu \(f\left( 2 \right) \ne - 1 \Rightarrow \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{x - 2}} = \infty \) ( mâu thuẫn giả thiết )
Do đó \(f\left( 2 \right) = - 1\)
Ta có \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}} = T\)và ta có
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1 + 2x - {x^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \frac{a}{{4.\left( {2 + 2} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x}}{{\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} = \frac{a}{{16}} - \frac{2}{{4\left( {2 + 2} \right)}} = \frac{a}{{16}} - \frac{1}{8} = \frac{{a - 2}}{{16}}\end{array}\)
Hay là \(T = \frac{{a - 2}}{{16}}\).
Câu 3
D. \(\left( {SAB} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.