Một rạp hát có 30 dãy ghế. Dãy ghế đầu tiên có 25 ghế, mỗi dãy ghế sau có nhiều hơn dãy ghế liền trước 3 ghế. Hỏi rạp hát có bao nhiêu ghế?
Một rạp hát có 30 dãy ghế. Dãy ghế đầu tiên có 25 ghế, mỗi dãy ghế sau có nhiều hơn dãy ghế liền trước 3 ghế. Hỏi rạp hát có bao nhiêu ghế?
Quảng cáo
Trả lời:
Chọn C
Số ghế trong mỗi dãy lập thành 1 cấp số cộng với \({u_1} = 25\)và công sai \(d = 3\).
Ta có tổng số ghế trong rạp hát là \(S = {u_1} + {u_2} + ..... + {u_{30}}\)( vì rạp hát có 30 dãy ghế )
\(S = \frac{{30}}{2}\left( {{u_1} + {u_{30}}} \right) = 15\left( {{u_1} + {u_1} + 29d} \right) = 15\left( {2{u_1} + 29d} \right)\)
Hay là \(S = 15\left( {2.25 + 29.3} \right) = 2055\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n + 1} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 3n + 1 - {n^2}}}{{\sqrt {{n^2} + 3n + 1} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n + 1}}{{\sqrt {{n^2} + 3n + 1} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n} + \frac{1}{{{n^2}}}} + 1}} = \frac{3}{2}\)
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x + 2}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {2 + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 1} \right)}}{{ - \left( {x + 2} \right)}} = - \frac{1}{4}\)
Câu 2
Lời giải
Chọn C
Nếu \(f\left( 2 \right) \ne - 1 \Rightarrow \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{x - 2}} = \infty \) ( mâu thuẫn giả thiết )
Do đó \(f\left( 2 \right) = - 1\)
Ta có \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}} = T\)và ta có
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {f(x) + 2x + 1} - x}}{{{x^2} - 4}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1 + 2x - {x^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}}\\ = \frac{a}{{4.\left( {2 + 2} \right)}} + \mathop {\lim }\limits_{x \to 2} \frac{{ - x}}{{\left( {x + 2} \right)\left( {\left[ {\sqrt {f(x) + 2x + 1} + x} \right]} \right)}} = \frac{a}{{16}} - \frac{2}{{4\left( {2 + 2} \right)}} = \frac{a}{{16}} - \frac{1}{8} = \frac{{a - 2}}{{16}}\end{array}\)
Hay là \(T = \frac{{a - 2}}{{16}}\).
Câu 3
D. \(\left( {SAB} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.