Câu hỏi:

11/12/2025 39 Lưu

Một nhóm học sinh có \[6\] học sinh nam và \[4\] học sinh nữ. Chọn ngẫu nhiên \[2\] học sinh. Tính xác suất sao cho \[2\] học sinh được chọn có cả nam và nữ.

A. \[P\left( A \right) = \frac{1}{5}\].                   
B. \[P\left( A \right) = \frac{8}{{15}}\].          
C. \[P\left( A \right) = \frac{2}{9}\].                        
D. \[P\left( A \right) = \frac{4}{{15}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Số cách chọn 2 học sinh trong 10 học sinh là \(C_{10}^2\).

Nên số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{10}^2 = 45\).

Gọi \(A\)là biến cố “ Hai học sinh được chọn có cả nam và nữ”.

Khi đó số phần tử của biến cố \(A\) là \(n\left( A \right) = C_6^1.C_4^1 = 24\).

Vậy xác suất để chọn được hai học sinh có cả nam và nữ là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{24}}{{45}} = \frac{8}{{15}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét tam thức bậc hai \(f(x) =  - 86{x^2} + 86000x - 18146000\).

Nhận thấy \(f(x) = 0\) có hai nghiệm là \({x_1} \approx 302,5;\,\,\,\,\,\,\,{x_2} \approx 697,5\) và hệ số \(a =  - 86 < 0\). Ta có bảng xét dấu sau:

Diagram

Description automatically generated

Vì \(x\) là số nguyên dương nên:

Doanh nghiệp có lãi khi và chỉ khi \(f(x) > 0\), tức là \(303 \le x \le 697\).

Doanh nghiệp bị lỗ khi và chỉ khi \(f(x) < 0\), tức là \(x \le 302\) hoặc \(x \ge 698\).

Vậy doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm, doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm.

a) Sai: Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.

b) Sai: Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm

c) Đúng: Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.

d) Đúng: Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm

Câu 2

A. \(\frac{{157}}{{2313}}\).                                  
B. \(\frac{{190}}{{1309}}\).     
C. \(\frac{{570}}{{1309}}\).                                       
D. \(\frac{{467}}{{1509}}\).

Lời giải

Đáp án đúng là C

Không gian mẫu có \(A_{35}^3\) phần tử.

Có \(15\) cách chọn 1 học sinh nam và \(C_{20}^2\) cách chọn 2 học sinh nữ vào ban cán sự.

Sau khi chọn được 3 người, có \(3!\) cách phân chức vụ.

Suy ra có \(3!.15.C_{20}^2\) cách chọn ban cán sự lớp theo yêu cầu.

Vậy xác suất cần tính là \(\frac{{3!.15.C_{20}^2}}{{A_{35}^3}} = \frac{{570}}{{1309}}\).

Câu 5

A. \(D = \left[ {1; + \infty } \right)\).                   
B. \(D = \left( {1; + \infty } \right)\).   
C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).          
D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                  
B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).                                
C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                 
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP