Một nhóm học sinh có \[6\] học sinh nam và \[4\] học sinh nữ. Chọn ngẫu nhiên \[2\] học sinh. Tính xác suất sao cho \[2\] học sinh được chọn có cả nam và nữ.
Quảng cáo
Trả lời:
Đáp án đúng là B
Số cách chọn 2 học sinh trong 10 học sinh là \(C_{10}^2\).
Nên số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{10}^2 = 45\).
Gọi \(A\)là biến cố “ Hai học sinh được chọn có cả nam và nữ”.
Khi đó số phần tử của biến cố \(A\) là \(n\left( A \right) = C_6^1.C_4^1 = 24\).
Vậy xác suất để chọn được hai học sinh có cả nam và nữ là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{45}} = \frac{8}{{15}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tam thức bậc hai \(f(x) = - 86{x^2} + 86000x - 18146000\).
Nhận thấy \(f(x) = 0\) có hai nghiệm là \({x_1} \approx 302,5;\,\,\,\,\,\,\,{x_2} \approx 697,5\) và hệ số \(a = - 86 < 0\). Ta có bảng xét dấu sau:

Vì \(x\) là số nguyên dương nên:
Doanh nghiệp có lãi khi và chỉ khi \(f(x) > 0\), tức là \(303 \le x \le 697\).
Doanh nghiệp bị lỗ khi và chỉ khi \(f(x) < 0\), tức là \(x \le 302\) hoặc \(x \ge 698\).
Vậy doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm, doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm.
a) Sai: Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.
b) Sai: Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm
c) Đúng: Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.
d) Đúng: Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm
Lời giải
a) Đúng:Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{100}^5.\)
b) Sai: Từ 1 đến 100 có 50 số chẵn, suy ra số cách chọn 5 thẻ đều mang số chẵn là \(n\left( A \right) = C_{50}^5.\)
Vậy xác suất để 5 thẻ lấy ra đều mang số chẵn là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^5}}{{C_{100}^5}} \approx 0,028\)
c) Đúng: Gọi B là biến cố: “5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ”.
Suy ra \(n\left( B \right) = C_{50}^2.C_{50}^3\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^2.C_{50}^3}}{{C_{100}^5}} \approx 0,32\)
d) Sai: Từ 1 đến 100 có 33 số chia hết cho 3, 67 số không chia hết cho 3.
Gọi C là biến cố: “Ít nhất một số ghi trên 5 thẻ được chọn chia hết cho 3”.
Ta có \(\overline C \): “Cả 5 số trên 5 thẻ được chọn đều không chia hết cho 3”.
Suy ra \(n\left( {\overline C } \right) = C_{67}^5\), do đó \(n\left( C \right) = C_{100}^5 - C_{67}^5\).
Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{C_{100}^5 - C_{67}^5}}{{C_{100}^5}} \approx 0,87\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
