Câu hỏi:

11/12/2025 53 Lưu

Trong mặt phẳng toạ độ \(Oxy\), cho elip \(\left( E \right)\) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,(a > b > 0)\), đi qua điểm \(A\left( {2;0} \right)\) và có một tiêu điểm \({F_2}\left( {\sqrt 2 ;0} \right)\). Khi đó:

a) Tiêu cự của elip \(\left( E \right)\) bằng \(\sqrt 2 \).

b) \(a = 2\)

c) \({a^2} - {b^2} = 2\).

d) Điểm  \(B\left( {0;\sqrt 2 } \right)\) không thuộc elip \(\left( E \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Elip \(\left( E \right)\) có tiêu điểm \[{F_2}\left( {\sqrt 2 ;0} \right) \Rightarrow c = \sqrt 2 \] \( \Rightarrow {F_1}{F_2} = 2c = 2\sqrt 2 \).

b) Đúng : Ta có \(A \in \left( E \right) \Leftrightarrow \frac{{{2^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = 4\)\( \Rightarrow a = 2\).

c) Đúng: \(c = \sqrt {{a^2} - {b^2}}  \Rightarrow {a^2} - {b^2} = 2\).

d) Sai: \(c = \sqrt {{a^2} - {b^2}}  \Rightarrow \sqrt 2  = \sqrt {4 - {b^2}}  \Rightarrow {b^2} = 2\). Suy ra elip \(\left( E \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1\).

Ta có \(\frac{{{0^2}}}{{{4^2}}} + \frac{{{{\left( {\sqrt 2 } \right)}^2}}}{{{2^2}}} = 1 \Rightarrow B \in \left( E \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Số cách gieo lần một là 6 cách, số cách gieo lần hai là 1 cách. Suy ra số cách để sau hai lần gieo đều ra số chấm giống nhau là \(6.1 = 6\) cách.

b) Đúng: Số cách gieo lần một xuất hiện mặt 6 chấm là 1 cách, lần gieo thứ hai có 6 cách. Suy ra số cách gieo để gieo được lần đầu ra mặt 6 chấm là \(6.1 = 6\) cách.

c) Sai: Số cách gieo lần một được mặt 1 chấm là 1 cách, lần hai được mặt có số chấm khác 1 là 5 cách.

Số cách gieo lần một được mặt có số chấm khác 1 là 5 cách, lần hai được mặt 1 chấm là 1 cách.

Vậy số cách để hai lần gieo xuất hiện đúng một lần mặt 1 chấm là \(1.5 + 5.1 = 10\) cách.

d) Đúng: Số cách gieo hai lần là \(6.6 = 36\) cách.

Trường hợp 1: Số cách gieo hai lần đều được mặt 1 chấm là 1 cách.

Trường hợp 2: Số cách gieo hai lần được tổng số chấm bằng 3 là: 2 cách, gồm \(\left( {1;2} \right),\left( {2;1} \right)\).

Vậy số cách để sau hai lần gieo được tổng số chấm nhỏ hơn 4 là \(2 + 1 = 3\) cách.

Số cách gieo để sau hai lần gieo được tổng số chấm không bé hơn 4 là \(36 - 3 = 33\) cách.

Câu 2

A. \(\frac{{157}}{{2313}}\).                                  
B. \(\frac{{190}}{{1309}}\).     
C. \(\frac{{570}}{{1309}}\).                                       
D. \(\frac{{467}}{{1509}}\).

Lời giải

Đáp án đúng là C

Không gian mẫu có \(A_{35}^3\) phần tử.

Có \(15\) cách chọn 1 học sinh nam và \(C_{20}^2\) cách chọn 2 học sinh nữ vào ban cán sự.

Sau khi chọn được 3 người, có \(3!\) cách phân chức vụ.

Suy ra có \(3!.15.C_{20}^2\) cách chọn ban cán sự lớp theo yêu cầu.

Vậy xác suất cần tính là \(\frac{{3!.15.C_{20}^2}}{{A_{35}^3}} = \frac{{570}}{{1309}}\).

Câu 5

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                  
B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).                                
C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                 
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \left[ {1; + \infty } \right)\).                   
B. \(D = \left( {1; + \infty } \right)\).   
C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).          
D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP