Số nghiệm nguyên của bất phương trình \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0\] là bao nhiêu?
Quảng cáo
Trả lời:
Điều kiện: \[x \ne 0;x \ne - 2\].
Ta có \[\frac{{x - 1}}{x} - \frac{6}{{x + 2}} + 2 \le 0 \Leftrightarrow \frac{{\left( {x - 1} \right)\left( {x + 2} \right) - 6x + 2x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} \le 0 \Leftrightarrow \frac{{3{x^2} - x - 2}}{{{x^2} + 2x}} \le 0\].
Ta có bảng xét dấu sau

Dựa vào bảng xét dấu ta có tập nghiệm của bất phương trình là \[S = \left( { - 2; - \frac{2}{3}} \right] \cup \left( {0;1} \right]\].
Kết hợp giả thiết ta có các nghiệm nguyên thỏa mãn là: \[\left\{ { - 1;1} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tam thức bậc hai \(f(x) = - 86{x^2} + 86000x - 18146000\).
Nhận thấy \(f(x) = 0\) có hai nghiệm là \({x_1} \approx 302,5;\,\,\,\,\,\,\,{x_2} \approx 697,5\) và hệ số \(a = - 86 < 0\). Ta có bảng xét dấu sau:

Vì \(x\) là số nguyên dương nên:
Doanh nghiệp có lãi khi và chỉ khi \(f(x) > 0\), tức là \(303 \le x \le 697\).
Doanh nghiệp bị lỗ khi và chỉ khi \(f(x) < 0\), tức là \(x \le 302\) hoặc \(x \ge 698\).
Vậy doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm, doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm.
a) Sai: Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.
b) Sai: Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm
c) Đúng: Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.
d) Đúng: Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm
Câu 2
Lời giải
Đáp án đúng là B
Biểu thức \(\frac{1}{{\sqrt {x - 1} }}\) có nghĩa khi \(x - 1 > 0 \Leftrightarrow x > 1\). Vậy tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) là \(D = \left( {1; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
