Câu hỏi:

11/12/2025 37 Lưu

Một nhóm gồm \(4\) bạn nam và \(4\) bạn nữ mua vé xem ca nhạc với \(8\) ghế ngồi liên tiếp nhau theo một hàng ngang. Có bao nhiêu cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta đánh số các ghế ngồi theo thứ tự từ trái sang phải lần lượt là \(1,2,3,4,5,6,7,8\).

Có hai phương án để các bạn nam và các bạn nữ ngồi xen kẽ nhau là:

Phương án 1: các bạn nam ngồi các ghế \(1,3,5,7\) và các bạn nữ ngồi các ghế \(2,4,6,8\).

Có \(4!\) cách xếp \(4\) bạn nam vào các ghế \(1,3,5,7\).

Có \(4!\) cách xếp \(4\) bạn nữ vào các ghế \(2,4,6,8\).

Suy ra có \(4!.4! = 576\) cách xếp.

Phương án 2: các bạn nữ ngồi các ghế \(1,3,5,7\) và các bạn nam ngồi các ghế \(2,4,6,8\).

Có \(4!\) cách xếp \(4\) bạn nữ vào các ghế \(1,3,5,7\).

Có \(4!\) cách xếp \(4\) bạn nam vào các ghế \(2,4,6,8\).

Suy ra có \(4!.4! = 576\) cách xếp.

Vậy có \(576 + 576 = 1152\) cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét tam thức bậc hai \(f(x) =  - 86{x^2} + 86000x - 18146000\).

Nhận thấy \(f(x) = 0\) có hai nghiệm là \({x_1} \approx 302,5;\,\,\,\,\,\,\,{x_2} \approx 697,5\) và hệ số \(a =  - 86 < 0\). Ta có bảng xét dấu sau:

Diagram

Description automatically generated

Vì \(x\) là số nguyên dương nên:

Doanh nghiệp có lãi khi và chỉ khi \(f(x) > 0\), tức là \(303 \le x \le 697\).

Doanh nghiệp bị lỗ khi và chỉ khi \(f(x) < 0\), tức là \(x \le 302\) hoặc \(x \ge 698\).

Vậy doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm, doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm.

a) Sai: Doanh nghiệp bị lỗ khi bán từ 303 đến 698 sản phẩm.

b) Sai: Doanh nghiệp có lãi khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 697 sản phẩm

c) Đúng: Doanh nghiệp có lãi khi bán từ 303 đến 697 sản phẩm.

d) Đúng: Doanh nghiệp bị lỗ khi bán tối đa 302 sản phẩm hoặc bán tối thiểu 698 sản phẩm

Câu 2

A. \(\frac{{157}}{{2313}}\).                                  
B. \(\frac{{190}}{{1309}}\).     
C. \(\frac{{570}}{{1309}}\).                                       
D. \(\frac{{467}}{{1509}}\).

Lời giải

Đáp án đúng là C

Không gian mẫu có \(A_{35}^3\) phần tử.

Có \(15\) cách chọn 1 học sinh nam và \(C_{20}^2\) cách chọn 2 học sinh nữ vào ban cán sự.

Sau khi chọn được 3 người, có \(3!\) cách phân chức vụ.

Suy ra có \(3!.15.C_{20}^2\) cách chọn ban cán sự lớp theo yêu cầu.

Vậy xác suất cần tính là \(\frac{{3!.15.C_{20}^2}}{{A_{35}^3}} = \frac{{570}}{{1309}}\).

Câu 5

A. \(D = \left[ {1; + \infty } \right)\).                   
B. \(D = \left( {1; + \infty } \right)\).   
C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).          
D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                  
B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).                                
C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                 
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP