Câu hỏi:

12/12/2025 30 Lưu

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\) (tham khảo hình vẽ).

Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABC vuông tại B (tham khảo hình vẽ).  Các mệnh đề sau đúng hay sai? (ảnh 1)

Các mệnh đề sau đúng hay sai?

a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).

Đúng
Sai

b) \[BC \bot \left( {SAB} \right)\].

Đúng
Sai

c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).

Đúng
Sai
d) \[SB \bot BC\].
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Đúng

\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

\(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\) \( \Rightarrow \) Đáp án \(B,D\) đúng.

Suy ra khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\). Đáp án \(A\) đúng.

\(\Delta ABC\) vuông tại \(B\) nên \(AB\) không vuông góc với \(\left( {SAC} \right)\). Vậy đáp án sai là \(C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{36}}{{121}}\)

Lời giải

Ta có sơ đồ cây như sau:

Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy (ảnh 1)

Trong đó: Đ là biến cố "Lấy được quả bóng màu đỏ”, X là biến cố "Lấy được quả bóng màu xanh".

Dựa vào sơ đồ cây, xác suất lấy 2 bóng xanh sau 2 lượt là \({\left( {\frac{6}{{11}}} \right)^2} = \frac{{36}}{{121}}\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = {17^{ - x}}\ln 17\). 

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\]. 
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP