Phần 3. Câu trả lời ngắn.
Thí sinh trả lời đáp án từ câu 1 đến câu 6.
Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy
Phần 3. Câu trả lời ngắn.
Thí sinh trả lời đáp án từ câu 1 đến câu 6.
Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy
Quảng cáo
Trả lời:
Trả lời: \(\frac{{36}}{{121}}\)
Lời giải
Ta có sơ đồ cây như sau:
Trong đó: Đ là biến cố "Lấy được quả bóng màu đỏ”, X là biến cố "Lấy được quả bóng màu xanh".
Dựa vào sơ đồ cây, xác suất lấy 2 bóng xanh sau 2 lượt là \({\left( {\frac{6}{{11}}} \right)^2} = \frac{{36}}{{121}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Câu 2
A. \[2\].
Lời giải
Dựng hình bình hành \(ABFC\).
Ta có \(EM\;{\rm{//}}\;SF\)nên góc giữa \(EM\) và \(\left( {SBD} \right)\) bằng góc giữa \(SF\) và \(\left( {SBD} \right)\).
\(FB\;{\rm{//}}\;AC\)\( \Rightarrow FB \bot \left( {SBD} \right)\) do đó góc giữa \(SF\) và \(\left( {SBD} \right)\) bằng góc \(\widehat {FSB}\).
Ta có \(\tan \widehat {FSB} = \frac{{BF}}{{SB}} = \frac{{AC}}{{SB}} = \sqrt 2 \). Vậy chọn D.
Câu 3
A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\({a^{\frac{5}{6}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(CD \bot AB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
